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Preface to the Third English Edition

The present edition is a translation of the fourth Russian edition of 2007, with the
previous three published in 1980, 1989, and 2004. The English translations of the
first two appeared in 1984 and 1996. The third and fourth Russian editions, extended
compared to the second edition, were published in two volumes titled Probability-1
and Probability-2. Accordingly, the present edition consists of two volumes: this
Vol. 2, titled Probability-2, contains Chaps.4-8, and Chaps. 1-3 are contained in
Vol. 1, titled Probability-1, which was published in 2016.

This English translation of Probability-2 was prepared by the editor and transla-
tor Prof. D. M. Chibisov, Professor of the Steklov Mathematical Institute. A former
student of N. V. Smirnov, he has a broad view of probability and mathematical statis-
tics, which enabled him not only to translate the parts that had not been translated
before, but also to edit both the previous translation and the Russian text, making in
them quite a number of corrections and amendments.

The author is sincerely grateful to D. M. Chibisov for the translation and scien-
tific editing of this book.

Moscow, Russia A. Shiryaev
2018

Preface to the Fourth Russian Edition

A university course on probability and statistics usually consists of three one-
semester parts: probability theory, random processes, and mathematical statistics.

The book Probability-1 covered the material normally included in probability
theory.

This book, Probability-2, contains extensive material for a course on random
processes in the part dealing with discrete time processes, i.e., random sequences.
(The reader interested in random processes with continuous time may refer to [12],
which is closely related to Probability-1 and Probability-2.)

Chapter 4, which opens this book, is focused mostly on the properties of sums of
independent random variables that hold with probability one (e.g., “zero—one” laws,
the strong law of large numbers, the law of the iterated logarithm).

Chapters 5 and 6 treat the strict and wide sense stationary random sequences.



vi

In Chaps.7 and 8, we set out random sequences that form martingales and
Markov chains. These classes of processes enable us to study the behavior of various
stochastic systems in the “future”, depending on their “past” and “present” thanks
to which these processes play a very important role in modern probability theory
and its applications.

The book concludes with a Historical Review of the Development of Mathemat-
ical Theory of Probability.

Moscow, Russia A. Shiryaev
2003
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Chapter 4 )

Sequences and Sums of Independent i
Random Variables

1. Zero-One Laws

The concept of mutual independence of two or more experiments holds, in a certain sense,
a central position in the theory of probability. ... Historically, the independence of exper-
iments and random variables represents the very mathematical concept that has given the
theory of probability its peculiar stamp.

A. N. Kolmogorov, Foundations of Probability Theory [50]

1. The series >~ (1/n) diverges and the series Y- (—1)"(1/n) converges.
We ask the following question. What can we say about the convergence or diver-
gence of a series Y~ (£,/n), where &1, o, . . . is a sequence of independent identi-
cally distributed Bernoulli random variables with P(§; = +1) = P(§; = —1) = 1?
In other words, what can be said about the convergence of a series whose general
term is +1/n, where the signs are chosen in a random manner, according to the
sequence &1,&o,...7

Let

o
&n
Al = w: E = converges
n

n=1

be the set of sample points for which Y °, (&,/n) converges (to a finite number),
and consider the probability P(A;) of this set. It is far from clear, to begin with,
what values this probability might have. However, it is a remarkable fact that we are
able to say that the probability can have only two values, 0 or 1. This is a corollary
of Kolmogorov’s zero—one law, whose statement and proof form the main content
of this section.

2. Let (2, #, P) be a probability space, and let &1, &9, . . . be a sequence of random
variables. Let #° = 0(&,,&,+1,-..) be the o-algebra generated by &,, 41, - - -,
and write

© Springer Science+Business Media, LLC, part of Springer Nature 2019 1
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Since an intersection of o-algebras is again a o-algebra, 2 is a o-algebra. It is

called a tail algebra (or terminal or asymptotic algebra), because every eventA € 2

is independent of the values of i, ...,§, for every finite number n, and is deter-

mined, so to speak, only by the behavior of the infinitely remote values of £1, o, . . ..
Since, for every k > 1,

o & o &
Al = > = > >
1 {Z . converges} {Z . converges} € F°,
n=1 n=k
we have A; € (), Z¢° = £. In the same way,
oo
Ay = {an converges} eZ.
n=1
The following events are also tail events:

Az = {&, € I, for infinitely many n} (= limsup {¢, € I,}),

where I, € Z(R),n > 1;

Ay = {limsupgn < oo};
n
As = {limsup€1+.-.+§" < },
n n
Ag = {limsup 3! Rk < c} ;
Sn
A7 =< — converges o, where S, =& +---+ &
n
A 1. Sn 1
= qlimsup ———— = .
s n p\/2nlogn
On the other hand,

By ={{ =0foralln> 1},
By = {lim (&1 4 -+ + &,) exists and is less than c}
n

are examples of events that do not belong to .Z".
Let us now suppose that our random variables are independent. Then by the
Borel-Cantelli lemma it follows that

P(A3) =0 Y P& €1,) < o,
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PAs) =1 Y P €l,) =

Therefore the probability of A; can take only a value of O or 1 according to the
convergence or divergence of > P(&, € I,,). This is Borel’s zero—one law, which is
a particular case of the following theorem.

Theorem 1 (Kolmogorov’s Zero—One Law). Let £1,¢&s, ... be a sequence of inde-
pendent random variables, and let A € Z . Then P(A) can only have a value of zero
or one.

PROOF. The idea of the proof is to show that every tail event A is independent of
itself, and therefore P(A N A) = P(A) - P(A), i.e., P(A) = P?(A), so that P(A) = 0
or 1.

IfA € Z,then A € F° = 0{&,&,...} = olU, #T1), where F] =
o{&1,...,&,}, and we find (Problem 8, Sect. 3, Chap. 2, Vol. 1) sets A, € Z],n> 1,
such that P(A A A,) — 0,n — co. Hence

P(A,) — P(4), PA,NA) — P(A). €))
Butif A € 2, the events A, and A are independent,
P(ANA,) =P(A) P(A,),

for every n > 1. Hence (1) implies that P(A) = P?(A), and therefore P(A) = 0
orl.

This completes the proof of the theorem.

O

Corollary. Let  be a random variable that is measurable with respect to the tail
o-algebra X ,i.e.,{n € B} € Z",B € B(R). Then n is degenerate, i.e., there is a
constant ¢ such that P(n = ¢) = 1.

3. Theorem?2 below provides an example of a nontrivial application of Kol-
mogorov’s zero—one law. Let &;,&s,... be a sequence of independent Bernoulli
random variables with P(§, = 1) = p,P(§, = —-1)=¢q¢,p+¢=1,n > 1, and let
Sy = & + -+ + &, It seems intuitively clear that in the symmetric case (p = %)
a “typical” path of the random walk S,,n > 1, will cross zero infinitely often,

whereas when p # %, it will go off to infinity. Let us give a precise formulation.

Theorem 2. (a) If p = 3, then P(S, = 0i.0.) = 1.
b) Ifp # % then P(S, = 04.0.) = 0.

PROOF. We first observe that the event B = (S, = 0 i.0.) is not a tail event, i.e.,
B¢ 2 =N%>, Z2° = 0{&,&+1,- .-} Consequently it is, in principle, not
clear that B should have only a value of O or 1.

Statement (b) is easily proved by applying (the first part of) the Borel-Cantelli
lemma. In fact, if Ba, = {Sa, = 0}, then, by Stirling’s formula (see (6), Sect. 2,

Chap. 1, Vol. 1),
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4 n
P(Bay) = Chp'q’ ~ AL

VTn
and therefore Y P(B3,) < co. Consequently, P(S, = 0i.0.) = 0.
To prove (a), it is enough to prove that the event

Sy . Sy
A= {limsup\/ﬁ = 00, hmlnfﬁ = —oo}
has probability 1 (since A C B).
LetA. = AL N A, where

Sl‘l . . Sﬂ
Al = {limnsup % > c} , Al = {hmnmf % < c} .
Then A, | A, ¢ = oo, and all the events A, A/, A are tail events. Let us show that
P(Al) = P(A) = 1foreach ¢ > 0. Since A, € 2" and A/ € 2, it is sufficient to
show only that P(A]) > 0,P(A”) > 0. But by Problem 5,

Sn . S]'[ . S}’l
P (limninf % < —c) =P (hmnsup % > c) > hmnsup P (ﬁ > c) > 0,

where the last inequality follows from the de Moivre-Laplace theorem (Sect. 6,
Chap. 1, Vol. 1).

Thus, P(A;) = 1 for all ¢ > 0, and therefore P(A) = lim._,o, P(A;) = 1.

This completes the proof of the theorem.

O

4. Let us observe again that B = {S, = 0 i.0.} is not a tail event. Nevertheless, it
follows from Theorem 2 that, for a Bernoulli scheme, the probability of this event,
just as for tail events, takes only the values 0 and 1. This phenomenon is not acci-
dental: it is a corollary of the Hewitt—Savage zero—one law, which for independent
identically distributed random variables extends the result of Theorem 1 to the class
of “symmetric” events (which includes the class of tail events).

Let us give the essential definitions. A one-to-one mapping = = (71, g, ...) of
the set (1,2, ...) on itself is said to be a finite permutation if 7, = n for every n with
a finite number of exceptions.

If £ = &1,&,, ... is a sequence of random variables, 7(£) denotes the sequence
(&nys&nyy--.). If Ais the event {€ € B}, B € #(R™), then 7(A) denotes the event
{m(&) € B},B € B(R™).

We call an event A = {& € B}, B € B(R™) symmetric if w(A) coincides with A
for every finite permutation 7.

An example of a symmetric event is A = {S, = 0 i.o.}, where S, =
& + -+ + &,. Moreover, it can be shown (Problem 4) that every event in the tail
o-algebra 2°(S) = (F°(S), where Z>2°(S) = o{S,,Su+1,- .-}, generated by
S1 =&1,82 =& + &, ... is symmetric.
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Theorem 3 (Hewitt—Savage Zero—One Law). Let &1, &, ... be a sequence of inde-
pendent identically distributed random variables and A = {{ € B} a symmetric
event. Then P(A) =0 or 1.

PROOF. Let A = {{ € B} be a symmetric event. Choose sets B, € Z(R") (see
Problem 8 in Sect. 3, Chap. 2, Vol. 1) such that, for A, = {w: (&1,...,&,) € By},

PAAA,) >0, n— . )

Since the random variables &7, &5, . . . are independent identically distributed, the
probability distributions P¢(B) = P(§ € B) and P, (¢)(B) = P(m,(§) € B) co-
incide, where 7,(£) = (a1, -5 &, &1y -+, &ny Eons 1, Eonty - . ) forall m > 1.
Therefore

P(AAA,) =P:(BAB,) = Pr. (BABy). 3)
Since A is symmetric, we have
A={¢ €B} =m(A) ={m(&) € B}.

Therefore

Pr.e)(BAB,) = P({m(£) € B} A{ma(§) € Bu})
= P({g € B} A {ﬂ-n(g) € Bn}) = P(A AWH(AH))' 4

Hence, by (3) and (4),
P(AAA,) = PAAT(A,)). 5)
By (2), this implies that
PAA (A, Nm,(An)) =0, n— oo. (6)
Therefore we conclude from (2), (5), and (6) that

P(4,) — P(4), P(m(A,)) — P(A),

P(A, N, (An)) — P(A). ™
Moreover, since &1, &s, ... are independent,
P(An N 7Tn(An)) = P{(fl, ey gn) S Bna (£n+17 ey £2n) S Bn}
= P{(flv ct fn) S Bn} : P{(§n+17 L) 5211) € Bn}
= P(A,) P(ma(An)),

whence, by (7),
P(4) = P*(4)
and therefore P(A) = 0 or 1.

This completes the proof of the theorem.
O
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4 Sequences and Sums of Independent Random Variables

. PROBLEMS

Prove the corollary to Theorem 1.

. Show that if (&,),>1 is a sequence of independent random variables, then the

random variables lim sup &, and lim inf &, are degenerate.

Let (&,) be a sequence of independent random variables, S, = & + -+ + &,,
and let the constants b, satisfy 0 < b, T co. Show that the random variables
lim sup (S,/b,) and lim inf (S, /b,) are degenerate.

LetS, =& +---+&,n>1,and

2(S) =(F2(S),  F2(S) = 0{Sn, Sut1,-- -}

Show that every event in 2 (S) is symmetric.

Let (&,) be a sequence of random variables. Show that {limsup &, > ¢} 2
limsup {¢, > ¢} for each ¢ > 0.

Give an example of a tail event whose probability is strictly greater than 0 and
less than 1.

. Let &, &9, ... be independent random variables with E&; = 0, E£? = 1 that

satisfy the central limit theorem (P{S,/v/n < x} — ®(x), x € R, where S, =
& + -+ &,). Show that

lim sup n 128, = 400 (P-as.).
n—00

In particular, this property holds for a sequence of independent identically dis-
tributed random variables (with E¢; = 0, E£7 = 1).

. Let &1,&,... be independent identically distributed random variables with

E &1 | > 0. Show that

n
lim sup ka = +oo (P-as.).
n—o0 k=1
2. Convergence of Series
1. Let us suppose that &1, &, ... is a sequence of independent random variables,

Sy = & + - + &, and let A be the set of sample points w for which 3 &, (w)
converges to a finite limit. It follows from Kolmogorov’s zero—one law that P(A) =
0 or 1, i.e., the series Y &, converges or diverges with probability 1. The object
of this section is to give criteria that will determine whether a sum of independent
random variables converges or diverges.

Theorem 1 (Kolmogorov and Khinchin). (a) Let EE, = 0,n > 1. Then, if

> E& <o, (1)

the series Y, &, converges with probability 1.
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7

(b) If &, are uniformly bounded (i.e., P (|€,] < ¢) =1, ¢ < oo, n > 1), then the

converse is true: the convergence of » . &, with probability 1 implies (1).

The proof depends on

Kolmogorov’s Inequalities. (a) Let &1,&o,...,&, be independent random vari-

ables with E& = 0, E€? < 00, 1 < i < n. Then for every e > 0

P{ max |Sg| > 5} < E;g.

1<k<n

(b) Ifalso P (|&] <¢)=1,1<i < n,then

(c+e)?
> > 11— .
P s 2 e} 2 1- g

PROOEF. (a) Put
A= >
{max [Si] > e},
Ak={|Si|<E,i:1,...,k—1,|Sk|25}, 1<k<n.

Then A = 5 Ay and
ES>ESiy=> ESiy,.

But

ESIQIIAk =E (Sk + (£k+1 +o gn))QIAk
= ESI?IAI{ + 2ESk(£k+1 +-+ gn)IAk +E (€k+1 +- gn)zlAk
> ESily,,

since
ESk(§krr + -+ +&)la, = ESpla, - E(§p1 + -+ &) =0

because of independence and the conditions E&; = 0, 1 < i < n. Hence
ES: > ) ESIy, > ) P(A) =*P(A),

which proves the first inequality.
(b) To prove (3), we observe that

ES2ly =ES? —ES2I; >ES? —?P(A) =ES? — &% + % P(A).
On the other hand, on the set A,

[Sk—1] <&, |Sk| <|Sk—1| + &l <e+c

2

3)

“)
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and therefore

ESI, = Z ESL,, + Z E (I, (S, — S¢)?)

(e+c) ZPAk +ZPAk Z E¢

Jj=k+1
<P@A) |(e+c)*+ > EE| =P@A)[(c+0)’ +ESI]. (5)
j=1
From (4) and (5) we obtain
ES? —¢2 (e +¢)? (e +¢)?
P(A) > 1 =1- >1-
( )_(E—i—C)Q—i—ESZ—E2 (e4+c¢)2+ES2—¢2~ ES?2

This completes the proof of (3).
O

PROOF OF THEOREM 1. (a) By Theorem 4 in Sect. 10, Chap.2, Vol. 1, the se-
quence (S,),>1 converges with probability 1 if and only if it is fundamental with
probability 1. By Theorem 1 of Sect. 10, Chap. 2, Vol. 1, the sequence (S,,)nzl, is
fundamental (P-a.s.) if and only if

P{sup|Sn+k—Sn| 25}—)0, n — oo. (6)
k>1
By (2),
P{sup\SnJrk =S| > 5} = hm P{ max, |Snix — Sul > 5}
k>1

Z”*N Efk _XL.EG

N—>oo E 62

Therefore (6) is satisfied if Y, ; E&Z < oo, and consequently > & converges with
probability 1.
(b) Let > & converge. Then, by (6), for sufficiently large n,

P{sup|S,,+k — 8> 5} <1 %
>1
By (3),
(c+¢e)?
Plsup|Sps — S| >eb>1- o)
{kzll)l + = S } S EEE

Therefore if we suppose that > -, E & = oo, then we obtain
P { sup |Sn+k - Sn‘ > 5} = 1a
k>1

which contradicts (7).
This completes the proof of the theorem.
O
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EXAMPLE. If &, &, ... is a sequence of independent Bernoulli random variables
with P(§, = +1) = P(§, = —1) = 3, then the series Y &,a,, with |a,| < ¢,
converges with probability 1 if and only if 3~ a? < oo.

2. Theorem 2 (Kolmogorov—Khinchin’s Two-Series Theorem). A sufficient condi-
tion for the convergence of the series >, &, of independent random variables with
probability 1 is that both series Y  E &, and > Var &, converge. If P(|¢,| < ¢) =1
for some ¢ > 0, this condition is also necessary.

PROOF. If " Var¢, < oo, then, by Theorem 1, the series > (&, — E&,) converges
(P-a.s.). But by hypothesis the series > E &, converges; hence > &, also converges
(P-a.s.).

To prove the necessity, we use the following symmetrization method. In addition
to the sequence &1, &o, . . ., we consider a different sequence, f 1, 52, ..., of indepen-
dent random variables such that é,, has the same distribution as &,,, n > 1. (When the
original sample space is sufficiently rich, the existence of such a sequence follows
from Corollary 1 to Theorem 1 of Sect. 9, Chap. 2, Vol. 1. We can also show that this
assumption involves no loss of generality.)

Then, if Z{n converges (P-a.s.), the series an also converges, and hence so
does > (& — &). But E (&, — &) = 0 and P(|&, — &| < 2¢) = 1. Therefore
> Var(§, — &) < oo by Theorem 1 (b). In addition,

ZVarEn—2ZVar {n < 0.

Consequently, by Theorem 1 (a), (&, — E&,) converges with probability 1, and
therefore > E &, converges.

Thus, if Y &, converges (P-a.s.) (and P(|¢,| < ¢) = 1, n > 1), then it follows
that both > E &, and > Var &, converge.

This completes the proof of the theorem.

O

3. The following theorem provides a necessary and sufficient condition for the con-
vergence of » &, without any boundedness condition on the random variables.
Let ¢ be a constant and
&= {ga |£‘ <c,
07

&l > c.

Theorem 3 (Kolmogorov’s Three-Series Theorem). Let &1, &, . .. be a sequence of
independent random variables. A necessary condition for the convergence of > &,
with probability 1 is that the series

SEg, > varg, Y P(&l>c)

converge for every ¢ > 0; a sufficient condition is that these series converge for
some ¢ > 0.
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PROOF. Sufficiency. By the two-series theorem, » |, £ converges with probability 1.
But if > P(|:| > ¢) < oo, then > I(|€,] > ¢) < oo with probability 1 by the
Borel-Cantelli lemma. Consequently, &, = & for all n with at most finitely many
exceptions. Therefore Y &, also converges (P-a.s.).

Necessity. If >~ &, converges (P-a.s.), then &, — 0 (P-a.s.), and therefore, for
every ¢ > 0, at most a finite number of the events {|£,| > ¢} can occur (P-a.s.).
Therefore Y I(|€,] > ¢) < oo (P-a.s.), and, by the second part of the Borel-Cantelli
lemma, > P(|¢,| > ¢) < co. Moreover, the convergence of > &, implies the con-
vergence of > £¢. Therefore, by the two-series theorem, both of the series > E &£
and )" Var & converge.

This completes the proof of the theorem.

O

Corollary. Let &1, &s, . .. be independent variables with E &, = 0. Then, if

2

2B g <

the series . &, converges with probability 1.

For the proof we observe that

2
2 E5 an|g”| <oo e Y E[EI1(&] < 1) +[&lI(&] > 1)] < co.

Therefore if £} = £,1(|¢,| < 1), then we have

D> E(&)? <.

Since E&, = 0, we have

SEGT=YIE&GI(G] < 1) =) [E&GI(I&] > 1)
< ST ElGII(6] > 1) < .
Therefore both " E £} and Y Var £} converge. Moreover, by Chebyshev’s inequal-
ity,
P{I&nl > 1} = P{I&lI(|€a] > 1) > 1} < E([&alI(I€a] > 1).

Therefore Y P(|¢,| > 1) < oo. Hence the convergence of > &, follows from the
three-series theorem.
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4. PROBLEMS

1.

10.

Let&y,&o, . . . be asequence of independent random variables, S, = &1 +. . .+&,.
Show, using the three-series theorem, that:
(@) If Y &2 < oo (P-ass.), then Y &, converges with probability 1 if and only
if > E &I(]&i| < 1) converges;
(b) If Y &, converges (P-a.s.), then Y &2 < oo (P-a.s.) if and only if

SO El&lH(&] < 1)

. Let &1,&5,... be a sequence of independent random variables. Show that

€2 < oo (P-a.s.) if and only if

. Let&,&,,. . . be a sequence of independent random variables. Then the follow-

ing three conditions are equivalent:

(a) The series Y . &, converges with probability 1;
(b) The series Y &, converges in probability;

(b) The series Y &, converges in distribution.

. Give an example showing that in Theorems 1 and 2 we cannot dispense with the

uniform boundedness condition (P{|¢,| < ¢} = 1 for some ¢ > 0).

. Let&q, ..., &, be independent identically distributed random variables such that

E¢ =0,E¢? < oo,andlet S, = & + - - - + &,. Prove the following one-sided
analog (A. V. Marshall) of Kolmogorov’s inequality (2):

P{ max S > 6} < ES'Q'

1<k<n e2+ES?
Let &1,&2,... be a sequence of (arbitrary) random variables. Show that if
Y n>1 Elén] < oo, then ) -, &, absolutely converges with probability 1.
. Let &1, &, ... be independent random variables with a symmetric distribution.
Show that

E[(Zn:fanl} ZE (€2 A1).

. Let &1,&5, ... be independent random variables with finite second moments.

Show that 3 &, converges in L? if and only if >_ E &, and >~ Var &, converge.
Let &1,&2, ... be independent random variables and the series 3 &, converge
a.s. Show that the value of this series is independent of the order of its terms if
and only if 32 E (& &] < 1)| < oc.

Let &1, &5, ... be independent random variables with E&, = 0,n > 1, and

oo

D EGI(&] < 1) + [&l1(1&] > 1)) < 00

n=1

Then Z;il &, converges P-a.s.
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11. Let Aj,Aq,... be independent events with P(4,) > 0, n > 1, and
572 P(A,) = co. Show that

n=1
3 1) / SP@A) 1 (P-as) as n— oo,
=1 =1

12. Let&q,&s, . .. be independent random variables with expectations E &, and vari-

ances o2 such that lim, E&, = cand Y~ | 0,72 = co. Show that in this case

n . n 1
Z%/Z? —c¢ (P-as.) as n— oc.
=10 " =1
13. Let &1,&o, . .., &, be independent random variables with E&; = 0, i < n, and let
Sy =& + & + - - + &. Prove Etemadi’s inequality

> < >
P (max IS > 3¢) < 3 max P(|5] > )
and deduce from it Kolmogorov’s inequality (with an extra factor 27):

27
P ( max [Si] > 3¢) < —2E53.
1<k<n €

3. Strong Law of Large Numbers

1. Let &1, &2, . . . be a sequence of independent random variables with finite second
moments: S, = & + --- + &,. By Problem 2 in Sect. 3, Chapter 3, Vol. 1, if the
variances Var &; are uniformly bounded, we have the (weak) law of large numbers:

S,—ES, p
%
n

0, n— oo. (D

A strong law of large numbers is a proposition in which convergence in proba-
bility is replaced by convergence with probability 1.
One of the earliest results in this direction is the following theorem.

Theorem 1 (Cantelli). Let &1, &2, . .. be independent random variables with finite
fourth moments, and let

4
El& —E&|I"<C, n>1,
for some constant C. Then, as n — o,

Sy —ES,

. —0 (P-as.). 2)
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PROOF. Without loss of generality, we may assume that E &, = 0 for n > 1. By the
corollary to Theorem 1, Sect. 10 of Chap. 2, Vol. 1, we will have S,/n — 0 (P-a.s.),

provided that
Sn
Z P { — 5} < 00
n
for every € > 0. In turn, by Chebyshev’s inequality, this will follow from
>_E

Let us show that this condition is actually satisfied under our hypotheses.
We have

< oQ.

l
n

Si=(a++&)" Zé +22,2,£2£2+22,1,1,£2§5k

i7]
1<1 i#k
Jj<k
| 9@
+ Y AGEEE+D TR
i<j<k<I i#

Remembering that E &, = 0, kK > 1, we then obtain

ES! = ZEf +GZE§ E¢ <nc+621/Eg4 E¢t

ij=1 i,j=1
i<j

6n(n —1)

<nC
< nC+ B

C = (3n* — 2n)C < 3n*C.

Consequently,
S\ 1
E(Z) <3¢ — .
SE(2) sseX e
This completes the proof of the theorem.

a

2. The hypotheses of Theorem 1 can be considerably weakened by the use of more
precise methods.

Theorem 2 (Kolmogorov). Let &1,&2, ... be a sequence of independent random
variables with finite second moments, and let there be positive numbers b, such that
b, 1 oo and

Var &,
> b; < . 3)
Then S Es
=" 50 (P-as.). 4)

by
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In particular, if

V n
3 irf < o0 5)
then S Es
=" 50 (P-as.). (6)
n

For the proof of this, and of Theorem 3 in what follows, we need two lemmas.

Lemma 1 (Toeplitz). Let {a,} be a sequence of nonnegative numbers, b, =
Z?:l a, bp = a1 > 0, and b, T oo, n — oo. Let {x,},>1 be a sequence of
numbers converging to x. Then

1 n
b Z axj — X. @)
n =1
In particular, if a, = 1, then
i EE )
n

PROOE. Lete > 0, and let ny = ng(e) be such that |x, — x| < /2 for all n > ny.
Choose n; > ng such that

IS
b—Z\xj—x| <eg/2.

ni j:1

Then, for n > nq,
1 < 1 <
b—Zajxj—x < b—Zaj|xj—x|
n _]:1 n j:l
n

1 & 1
:b—zajlx,-fwa— > ajl—x|
"=t

" j=no+1
1 no 1 n
< b—Zaﬂxj—x\ + o > ajl—x
ny . n .
Jj=1 j=no+1
€ b,—by, ¢
< -+ Zn_ Tho T <e.
2 b, 2

This completes the proof of the lemma.
O

Lemma 2 (Kronecker). Let {b,} be a sequence of positive increasing numbers,
by 1 00, n — oo, and let {x,} be a sequence of numbers such that y_ x,, converges.
Then
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1 n
b—ijxj —0, n— oo.

In particular, if b, = n, x, = y,/n and >_(y,/n) converges, then

Vit At
n

—0, n—oo. ©

PROOF. Letbyg =0, So =0, S, = Z;:1 x;. Then (by summation by parts)

> bix = Zb ) = baSy — boSo — Y _ Sj-1(bj — bi_1)
j=1 j=1

and therefore (settlng a; =b; — bj_1),

since, if S,, — x, then, by Toeplitz’s lemma,

1 n
F Z ijlaj — X.
n j:1

This establishes the lemma. O

PROOF OF THEOREM 2. Since
1 —E&
-5 (85E%).
k=

a sufficient condition for (4) is, by Kronecker’s lemma, that the series > [(& —
E &)/bi] converges (P-a.s.). But this series does converge by (3) and Theorem 1 of
Sect. 2.

This completes the proof of the theorem.

O

}’l

EXAMPLE 1. Let &1,&5, ... be a sequence of independent Bernoulli random vari-
ables with P(¢, = 1) = P(§, = —1) = 3. Then, since >_[1/(n log® n)] < oo, we

have
Sy

Vnlogn

3. In the case where the variables &1, &5, . .. are not only independent but also
identically distributed, we can obtain a strong law of large numbers without requir-
ing (as in Theorem 2) the existence of the second moment, provided that the first
absolute moment exists.

—0 (P-as.). (10)
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Theorem 3 (Kolmogorov). Let &1,&o, . .. be a sequence of independent identically
distributed random variables with E |£1| < co. Then

% —m (P-as.) (11)

where m = E ;.
For the proof we need the following lemma.

Lemma 3. Let £ be a nonnegative random variable. Then

Y PE=n) <EL<14 Y PE>n). (12)
n=1 n=1

The proof consists of the following chain of inequalities:

oo

Y PE=n) =

n=1

}: (k<&<k+1)
k>n

Mg uMg

kP(k<&<k+1)=) Ek(k<&<k+1)
k=0

R.
Il
-

0

E[g/(k <& <k+1)]

».
Il
=)

= gi E[(k+DIk<&<k+1)]
k=0

+1)Pk<&<k+1)

I
WE
=

k=0
=S "PEn)+ Y Phk<é<k+1)=> PE>n)+1
n=1 k=0 =1

(Or one can use formula (69) with n = 1 of Sect. 6, Chap.2, Vol.1.) O

PROOF OF THEOREM 3. By Lemma 3 and the Borel-Cantelli lemma (Sect. 10,
Chap. 2, Vol. 1),

El¢1| <ooe Y P{&|>n} < oo
&Y P{&] = n} < oo P{g| = nio} =0.

Hence |¢,| < n, except for a finite number of n, with probability 1.
Let us put

& é-na |§n| <n,
b = { &l > n,
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and suppose that E§, = 0, n > 1. Then &, # 5,, for finitely many n (P-a.s.), and
therefore ({1 +---+&,)/n — 0 (P-as.) if and only if (§ +---+&,) /n — 0 (P-a.s.).
Note that in general E ¢, # 0, but

E& =E& (6] <n) =E&I(l&] <n) - E& =0.
Hence, by Toeplitz’ lemma,

J RN
EZE&‘_)O’ n— oo,

and consequently, (§; + -+ +&,)/n — 0 (P-a.s.) as n — oo if and only if
& -EB)++(&-EB&) (P-as.). (13)

n

Write £, = £, —E &,. By Kronecker’s lemma, (13) will be established if 3_(, /n)
converges (P-a.s.). In turn, by Theorem 1 of Sect. 2, this will follow if we show that,
when E |¢;| < oo, the series 3 (Var &,/n?) converges.

We have

Var £,
o s

<f: fjlz E[6/(16] < n))?

21 €11 < ) 2125 (k=12 Jea] < k)
SN <16 <b]- Y

2 =

<23 LE[HIK—1< fol < )

=~

8n

=

Z [€al(k = 1 < [&1] < k)] = 2E [&1] < oo.

This completes the proof of the theorem. O

Remark 1. The theorem admits a converse in the following sense. Let &1, &o, . . . be
a sequence of independent identically distributed random variables such that

Gt + &
n

— C,

with probability 1, where C is a (finite) constant. Then E |§1] < co and C = E&;.
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In fact, if S,,/n — C (P -a.s.), then

Sn _ Su_ (n_l) St —0 (P-as.)

n n n n—1

and therefore P(|¢,| > ni.o.) = 0. By the Borel-Cantelli lemma (Sect. 10, Chap. 2,
Vol. 1),

SRl > n) < oo,

and by Lemma 3 we have E |£;]| < co. Then it follows from the theorem that C =
E¢&.

Consequently, for independent identically distributed random variables, the con-
dition E |£1] < oo is necessary and sufficient for the convergence (with probabil-
ity 1) of the ratio S, /n to a finite limit.

Remark 2. If the expectation m = E &; exists but is not necessarily finite, the con-
clusion (9) of the theorem remains valid.
In fact, let, for example, E£; < oo and E {T = o00. With C > 0, put

S$ =) &l& < Q).
i=1

Then (P-a.s.)
C

liminf& > liminfs—” =E&I(6 <O).
n n n n

Butas C — oo,
E&I(& <C) — E& = oo,

and therefore S, /n — +oo (P-a.s.).

Remark 3. Theorem 3 asserts the convergence % — m (P-a.s.). Note that, be-
sides the convergence almost surely (a.s.), in this case, the convergence in the mean

S’—l" L—> m) also holds, i.e., E’% — m‘ — 0, n — oo. This follows from the ergodic

Theorem 3 of Sect. 3, Chap. 5. But in the case under consideration of independent
identically distributed random variables &1, s, ... and S, = & + &3 + - - - + &, this
can be proved directly (Problem 7) without invoking the ergodic theorem.

4. Let us give some applications of the strong law of large numbers.

EXAMPLE 2 (Application to number theory). Let © = [0,1), let £ be the sigma-
algebra of Borel subsets of €2, and let P be a Lebesgue measure on [0, 1). Consider
the binary expansions w = 0. wyws . .. of numbers w € €2 (with infinitely many 0s),
and define random variables &; (w), &2(w), . .. by putting &,(w) = w,. Since, for all
n>1landallxq,..., x, taking a value O or 1,

{w: gl(w) = X1 -y gn(w) :xn}

S - SR
— w: — — — w — e — —
2 "2 nS9S ST
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the P-measure of this set is 1/2". It follows that &, &,, . . . is a sequence of indepen-
dent identically distributed random variables with

Hence, by the strong law of large numbers, we have the following result of Borel:
almost every number in [0,1) is normal, in the sense that with probability 1 the
proportion of zeroes and ones in its binary expansion tends to %, ie.,

(P-as.).

NN

1 n
;Z?@:D»

EXAMPLE 3 (The Monte Carlo method). Let f(x) be a continuous function defined
on [0, 1], with values in [0, 1]. The following idea is the foundation of the statistical
method of calculating fol f(x) dx (the Monte Carlo method). Let &1, 71, &2, 72, - - -
be a sequence of independent random variables uniformly distributed on [0, 1]. Put

o {1 if £(&) > mis
PEZ 0 i f(&) < e

It is clear that

Epr = PIf(€) > m) = / £(x)dx.

By the strong law of large numbers (Theorem 3),
I !
- Zpi — | f(x)dx (P-as.).
"= 0

Consequently, we can approximate an integral fol f(x)dx by taking a simulation
consisting of pairs of random variables (&;,7;), i > 1, and then calculating p; and
(1/n) 3221 pi-
EXAMPLE 4 (The strong law of large numbers for a renewal process). Let N =
(N:)r>0 be a renewal process introduced in Subsection 4 of Sect. 9, Chap. 2, Vol. 1:
N, =Y 2, (T, <1), T, =01+ + 0, Where 1,09,... is a sequence of
independent identically distributed positive random variables. We assume now that
pw=Eo <.
Under this condition, the process N satisfies the strong law of large numbers:
N, 1
—L 5= (P-as), t— oo (14)
t M
For the proof, we observe that the assumption N; > 0 and the fact that Ty, < ¢ <
Tn,+1,t > 0, imply the inequalities

Ty, ¢ Ty 1
L LN (1 7)_ 15
N =N SN iUt (15
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Clearly, N, = N,(w) — oo (P-a.s.) as t — oo. At the same time, by Theorem 3,

T, (w) _ o1(w) -+ on(w) —u (P-as.), n— oo.

Therefore we also have

TNf(w) (w)

— P-as.), n— oo,
Ni(w) wo( )

and hence we see from (15) that there exists (P-a.s.) the limit lim,_, ., #/N;, which
is equal to i, which proves the strong law of large numbers (14).

5. PROBLEMS

1. Show that E¢? < ooif and only if Y2, nP(|¢| > n) < cc.

2. Supposing that &, &, . .. are independent identically distributed, show that if
E|&1]® < oo for some o, 0 < «a < 1, then S,/n'/® — 0 (P-a.s.), and if
E|&1]% < oo for some 3,1 < B < 2, then (S, —nE&;)/n'/? — 0 (P-as.).

3. Let &y, &9, ... be asequence of independent identically distributed random vari-
ables, and let E |£;| = oo. Show that

=00 (P-as.)

. Su
limsup |[— — a,
n n

for every sequence of constants {a, }.

4. Are all rational numbers in [0, 1) normal (in the sense of Example 3)?

5. Give an example of a sequence of independent random variables &1, €2, ... such
that the limit lim,,~,(S,/n) does exist in probability but does not exist with
probability 1.

6. (N. Etemadi) Show that Theorem 3 remains valid with the independence condi-
tion of 1, &9, . .. replaced by their pairwise independence.

7. Show that under the conditions of Theorem 3, convergence in the mean (i.e.,
E|(S,/n) —m| — 0, n — 00) also holds.

8. Let &;,&,... be independent identically distributed random variables
with E 7 < co. Show that

nP{|&| >ev/n} -0 and %IIE?;( &l S o.
9. Consider decimal expansions of the numbers w = 0.wiwz ... in [0, 1).
(a) Carry over to this case the strong law of large numbers obtained in Subsec-
tion 4 for binary expansions.
(b) Show that rational numbers are not normal (in the Borel sense), i.e., in their
decimal expansion (§(w) = wy, k > 1),

I 1
721(5,((@ =i)» — (P-as.) forany i=0,1,...,9.
ni— 10
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10.

11.

12.

13.

14.

15.

(¢) Show that the Champernowne number w = 0.12345678910111213...,
containing all the integers in a row, is normal (Example 3).
(a) Let &,&9,... be a sequence of independent random variables such that
P{¢&, = +n"} = 1/2. Show that this sequence satisfies the strong law of large
numbers if and only if a < 1/2.
(b) Let f = f(x) be a bounded continuous function on (0, co). Show that, for
any a > 0 and x > 0,

i S (e B st
k=1 ’

Prove that Kolmogorov’s law of large numbers (Theorem 3) can be restated in
the following form: Let &£;1,&5, ... be independent identically distributed ran-
dom variables; then

El&] <00 <= n 'S, - E&  (P-as.),
E|¢] = 0 < limsup n 1S, =400 (P-as.).

Prove that the first statement remains true with independence replaced by pair-
wise independence.

Let&q1,&, ... be asequence of independent identically distributed random vari-
ables. Show that

%’ < oo <= E|&]logh |&] < .

E sup
n

LetS, =& + -+ &, n > 1, where £1,&,, ... is a sequence of independent
identically distributed random variables with E&; = 0, E |§1] > 0. Show that
limsup n~=1/2S, = oo, liminf n=1/2S, = —co (P-a.s.).
LetS, =& +---+ &, n > 1, where £1,&o, ... is a sequence of independent
identically distributed random variables. Show that for any o € (0,1/2] one of
the following properties holds:

(a) n=°§, — oo (P-as.);

(b) =S, —» —oo (P-as.);

(¢) limsupn=“S, = oo, liminf n=%S, = —co (P-a.s.).
LetSo =0and S, = & + --- + &, n > 1, where £1,&, ... is a sequence of
independent identically distributed random variables. Show that:

(a) Foranye > 0

ZP{\SV,\ >ne} <oo <= E& =0, EE < o0

n=1

(b) IfE&; <0, thenforp > 1

p—1
E (supS,,) < oo = E(&) < oo
n>0
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(c) IfE& =0and 1 < p < 2, then for a constant C,

oo

; P{I?gfsk > n} <G EI[&], ; P{I?giqskl > n} <2C,E|&

(d) IFE& =0, E&F < o0, and M(e) = sup,5((S, — ne), € > 0, then
lim eM(g) = o2 /2.

e—0

4. Law of the Iterated Logarithm

1. Let &1,&,, ... be a sequence of independent Bernoulli random variables with
P& =1) =P = —-1) = %; let S, = & + -+ + &,. It follows from the
proof of Theorem 2, Sect. 1, that

Sn . . Sn
lim sup % = 400, liminf % = —00, Q8
with probability 1. On the other hand, by (10) of Sect. 3,
_S g (P-as.) ()
Vnlogn e

Let us compare these results.

It follows from (1) that with probability 1 the paths of (S,),>1 intersect the
“curves” +e+/n infinitely often for any given € > 0; but at the same time, (2) shows
that they only finitely often leave the region bounded by the curves +e+/nlogn.
These two results yield useful information on the amplitude of the oscillations of
the symmetric random walk (Sn)nzl- The law of the iterated logarithm, which we
present in what follows, improves this picture of the amplitude of the oscillations of
(Sn)n>1-

Definition. We call a function ¢* = ¢*(n), n > 1, upper (for (S,)n>1) if, with
probability 1, S, < ¢*(n) for all n from some n = ng(w) on.

We call a function ¢, = @.(n), n > 1, lower (for (S,),>1) if, with probability 1,
S, > @« (n) for infinitely many n.

Using these definitions, and appealing to (1) and (2), we can say that every func-
tion p* = ey/nlogn, € > 0, is upper, whereas p, = £+/n is lower, ¢ > 0.

Let ¢ = ¢(n) be a function and ¢} = (1 + €)p, Yse = (1 — €)p, where € > 0.
Then it is easily seen that

{25 <1} = {05 <1}
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S
& sup <1+ ¢ forany € > 0 and some n; (&, w)
m>ny (e,w) (p(m)

< {Sn < (14 ¢)p(m) for any € > 0, from some n1(e,w) on}. (3)

In the same way,

. Sn . S
limsup —— > 1, = ¢ lim |sup >1
(n) n Lmzn p(m)
SI’I'I
& { sup > 1 — ¢ for any € > 0 and some na(e,w) }

m>na(e,w) @(m)

Sm > (1 — &)¢(m) for any € > 0 and @
for m larger than some ng(e,w) > na(e,w).

It follows from (3) and (4) that to verify that each function p* = (1+¢)p, € > 0,
is upper, we must show that

P {limsupsn < 1} =1, ®))
¢(n)

and to show that p.. = (1 — &), € > 0, is lower, we must show that

Sﬂ
P{limsup > 1} =1. (6)
o(n)

2. Theorem 1 (Law of the Iterated Logarithm). Let &1, &3, . .. be a sequence of in-
dependent identically distributed random variables with E¢; = 0 and E€? = o2 > 0.

Then

P {limsupws(';l) = 1} =1, @)

where

Y(n) = /202 n loglog n. (8)

For uniformly bounded random variables, the law of the iterated logarithm was
established in 1924 by Khinchin [46]. In 1929 Kolmogorov [48] generalized this
result to a wide class of independent variables. Under the conditions of Theorem 1,
the law of the iterated logarithm was established by Hartman and Wintner [40].

Since the proof of Theorem 1 is rather complicated, we shall confine ourselves to
the special case where the random variables &, are normal, §, ~ 4°(0,1),n > 1.

We begin by proving two auxiliary results.

Lemma 1. Let &1, . . ., &, be independent random variables that are symmetrically
distributed (P (& € B) = P(—=& € B) for every B € B(R), k < n). Then for every
real number a > 0



24 4 Sequences and Sums of Independent Random Variables

P (111511?;5]‘ > a) <2P(S, > a). 9)

PROOF. Let Ay = {S; < a,i < k—1; 8 > a}, A = {maxi<k<, Sk > a}, and
B ={S, > a}. Since Ay NB 2 Ay N {S, > Sk}, we have

P(Ak OB) > P(Ak N {Sn > Sk}) = P(Ak) P(S,, > Sk)
=P(A) P(&t1 + -+ & > 0).

By the symmetry of the distributions of the random variables &1, . . . , &,, we have
P&+ 4+ & >0) = P(lyr +- -+ <0).
Hence P(&41 4+ -+ &, >0) > %, and therefore
S 1 1
P(E) > 3 PANE) > 55 P(A) = 5 PA)

which establishes (9) (cf. proof in Subsection 3 of Sect. 2, Chap. 8).
O

Lemma 2. Let S, ~ A (0, 0%(n)), 0%(n) 1 oo, and let a(n), n > 1, satisfy
a(n)/o(n) — oo, n — oo. Then

a(n)
P(S, > a(n)) ~ ——— exp{—21a®(n)/c?(n)}. 10
(S0 alm) ~ 2 expl(— 4 1) fo? () (10)
The proof follows from the asymptotic formula
1 2 1 2
— eV 2 dy ~ e % x 500,
V2 /x Y V2mx

since S, /o (n) ~ A(0,1).

PROOF OF THEOREM 1 (for & ~ A47(0,1)). Let us first establish (5). Let ¢ > 0,
A =14c¢, m = N, where k > ko, and kg is chosen so that log log kg is defined.
We also define

Ax = {Sy > Mp(n) for somen € (ng, nk41]} (11)

and put
A = {Ai.0.} = {S, > A\p(n) for infinitely many n}.

In accordance with (3), we can establish (5) by showing that P(A) = 0.
Let us show that > P(A;) < oc. Then P(A) = 0 by the Borel-Cantelli lemma
(Sect. 10, Chap. 2, Vol. 1).
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From (11), (9), and (10) we find that

P(Ay) < P{S, > \)(ny) for somen € (ng, ngs1)}
< P{S, > Mp(ny) for somen < myy1}

<2P(S,, > Mi(m)) ~ J%g() exp{— LN [4s(me) /v/Fe]2)

< Crexp( = log log M) < CoemMosk = k=2,

where C; and Cs are constants. But Z,fil k= < 00, and therefore

> P(A) < oo

Consequently, (5) is established.

We turn now to the proof of (6). In accordance with (4), we must show that, with
A =1—¢, e > 0, we have with probability 1 that S, > Ai(n) for infinitely many n.

Let us apply (5), which we just proved, to the sequence (—S,),>1. Then we find
that for all n, with finitely many exceptions, —S,, < 2¢(n) (P-a.s.). Consequently,
if ny = N¥, N > 1, then for sufficiently large k, either

Snk_ 1 2 —21/1(’1/# 1)

or
S > Yie — 2¢(ng—1), (12)

where Y, = S, — S,,_,-
Hence, if we show that for infinitely many k

Y > Mp(ng) + 29 (ng—1), (13)

this and (12) show that (P-a.s.) S,, > A¢(ny) for infinitely many k. Take some
A € (A, 1). Then there is an N > 1 such that for all k

N[2(NF = N¥1) loglog NF]*/2 > \(2N* log log N¥)1/2
+ 2(2N* "1 log log NF"1)1/2 = Ap(NK) + 24 (NF1).
It is now enough to show that
Yi > N[2(NF — N 1) log log N¥]/2 (14)

for infinitely many k. Evidently Y; ~ .4/ (0, N* — N*¥~1). Therefore, by Lemma 2,

1 e k

P{Y, > N[2(N* — N* 1) 1log log N|*/?}~ e~ (V)7 loglogN
R 12 )loglog N7} V2r N (21og log N¥)1/2

L O e G
~ (logk)/2 ~ klogk
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Since > (1/klogk) = oo, it follows from the second part of the Borel-Cantelli
lemma that, with probability 1, inequality (14) is satisfied for infinitely many k, so
that (6) is established.

This completes the proof of the theorem. O

Remark 1. Applying (7) to the random variables (—S,),>1, we find that (P-a.s.)

liminf =" — _1. (15)
©(n)

It follows from (7) and (15) that the law of the iterated logarithm can be put in the
form

P {limsup 54| = 1} =1. (16)
o(n)

Remark 2. The law of the iterated logarithm says that for every € > 0 each function
¥ = (1+¢) is upper and ¥, = (1 — £)1) is lower.
The conclusion (7) is also equivalent to the statement that, for each ¢ > 0,
P{|S.| > (1 —e)¢¥(n)io.} =1,
P{|S.| > (1 +¢&)¢(n)io.} =0.

3. PROBLEMS

1. Let &1, &2, ... be a sequence of independent random variables with &, ~
A4(0,1). Show that
: &n
P<l ——=1,=1.
{ 1m sup J2logn
2. Let &1, &9, ... be a sequence of independent random variables, distributed ac-

cording to Poisson’s law with parameter A > 0. Show that (regardless of \)

P@mam&b@%m_1}_L

logn
3. Let &y, &9, ... be a sequence of independent identically distributed random vari-
ables with ‘
Ee't = " 0<a<2.
Show that
1/(loglog n)
P < lim sup 1" e/} =1.
nl/a

4. Establish the following generalization of (9). Let &1, . . ., &, be independent ran-
dom variables, and let S = 0, S = &1 + - - - + &. Then Lévy’s inequality

P {Orgl?%(n[Sk + 1(Sy — Si)] > a} < 2P(S, > a)



5 Probabilities of Large Deviations 27

holds for every real a > 0, where p(&) is the median of &, i.e., a constant such
that

PE>pu(€) 2 4. PE<u(©) >}

5. Let&y, ..., &, beindependent random variables, and let Sy = 0, Sy = &1+ - -+
Prove that:
(a) (In addition to Problem 4)

— > < >
P{lrgii%(nmk + (S — Si)| > a} < 2P{[S,| > a},

where p(€) is the median of ;
(b) If &1, ..., &, are identically distributed and symmetric, then

_ P&} o { } <

1—e <P 112/2{1;\{/(\ >xp < 2P{|S,| > x}.

6. Let&y,. .., &, be independent random variables with E&; = 0, 1 < i < n, and let
Sy = &1 + - -+ + &. Show that

P{ max Sy > a} <2P{S,>a—E|S,|} fora>0.
1<k<n

7. Let&y,. .., &, be independent random variables such that E&; = 0, 02 = E£2 <
00, and |§| < C (P-ass.), i <n.LetS, =& + -+ &, Show that

Ee™ < exp{2 'm®0*(1+xC)} forany 0 <x <2C '

Under the same assumptions, show that if (a,) is a sequence of real numbers
such that a,//n — oo, but a, = o(n), then for any € > 0 and sufficiently large

n
2

an
P{S, > a,} > exp{—m2 (1+ 5)}.

8. Let &1,...,&, be independent random variables such that E¢; = 0, |§] < C
(P-as.),i <n.LetD, =), , Var&. Show that S, = & + - - - + &, satisfies the
inequality (Yu. V. Prohorov)

C
P{S, > a} < exp{—i arcsin a

R.
2C 2D,,}’ ac

5. Probabilities of Large Deviations

1. Consider the Bernoulli scheme treated in Sect. 6, Chap. 1, Vol. 1. For this scheme,
the de Moivre-Laplace theorem provides an approximation for the probabilities of
standard (normal) deviations |S, —np| > e+/n, i.e., deviations of S, from the central
value np by a quantity of order \/n. In the same Sect. 6, Chap. 1, Vol. 1 we gave a
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bound for probabilities of so-called large deviations |S, — np| > en, i.e., deviations
of S, from np of order n:

P{ S —p‘ > s} < 2072 (1)
n

(see (42) in Sect. 6, Chap. 1, Vol. 1). From this, of course, there follow the inequali-

ties
Sm _ >eb < P
Pl = >~ g

P {sup
m>n m>n

which provide an idea of the rate of convergence to p by the quantity S, /n with
probability 1.

We now consider the question of the validity of formulas of the types (1) and (2)
in a more general situation, when S, = & + --- 4 &, is a sum of independent
identically distributed random variables.

S 2,
m_P’ZE}Sl_e_%geQE7 ()

2. We say that a random variable £ satisfies Cramér’s condition if there is a neigh-
borhood of zero such that for any A in this neighborhood

EeMél < 5o 3)

(it can be shown that this condition is equivalent to an exponential decrease of
P(|¢] > x), as x — 00).
Let
©(\) =Ee* and ()\) = log (). 4)

On the interior of the set
A={)NeR: () < o} 5

the function ¢ () is convex (from below) and infinitely differentiable. We also no-
tice that

$(0) =0, '(0)=m(=EE), ¢"(N)=0.

We define the function

H(a) = suplah —¢(N\)], a€R, (6)
A

called the Cramér transform (of the distribution function F = F(x) of the random
variable £). The function H(a) is also convex (from below) and its minimum is zero,
attained at a = m.

If a > m, we have

H(a) = sup [aX — 1 (N)].
A>0
Then

Ple > gl < inf Eer6—9 — ipf e~ l@aA—v (V)] _ ,—H(a)
(€2 a) < BT = fufe ‘ 0
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Similarly, for a < m we have H(a) = sup, .o[aX — ()] and
P{e <a} <e . ®)
Consequently (cf. (42) in Sect. 6, Chap. 1, Vol. 1)
P{l¢ —m|>¢c} <e min{H(n—e),H(m+e)} 9)
If¢, &, ..., &, are independent identically distributed random variables that sat-
isfy Cramér’s condition (3), S, = & + -+ + &, ¥n(A) = logEexp (AS,/n),

P(A) = log Ee*¢, and
H,(a) = sgp[a)\ — P, (N)], (10)

then
H,(a) = nH(a) ( = nsgp[a)\ - 1/1()\)])

and inequalities (7), (8), and (9) assume the following forms:

Su _

P{ >a} <e ™M@ g>m, (11
n
Sn —nH(a)

Pi—<a;<e , a<m, (12)
n

{Sn ‘ } — min{#(n—e),H(n-+e)}-
P I oml>eb <2 min{H(m—e),H(m+e)}n (13)
n

Remark 1. Results of the type

n

P{ Su _ m‘ > 5} < ae™"", (14)

n

where a > 0 and b > 0, indicate exponential convergence “adjusted” by the con-
stants a and b. In the theory of large deviations, such results are often presented in
a somewhat different, “cruder,” form,

1 n
limsuplogP{‘Sm‘25}<0, (15)
nn n

that clearly arises from (14) and refers to the “exponential” rate of convergence, but
without specifying the values of the constants a and b.

Now we turn to the question of upper bounds for the probabilities

Sk .o Sk Sk
P{ig)k>a}, P{i2£k<a}’ P{igl,?km‘>€}’

which can provide definite bounds on the rate of convergence in the strong law of
large numbers.
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Let us suppose that the independent identically distributed nondegenerate ran-
dom variables &, &1, &o, . . . satisfy Cramér’s condition (3).
We fix n > 1 and set

n:min{kz n:S];k>a},

taking k = oo if Sy /k < a for all k > n.
In addition, let a and A\ > 0 satisfy

Aa —log () > 0. (16)
Then

P{supSk>a}—P U{i">a}

k
k>n k>n

S
:P{K’ > a, /<a<oo} =P{eM > M K < 00}
K

— P{EASﬁfnlogap()\) > en()\uflognp()\)), K< OO}

< P{e/\SR—nlogzp(/\) > en(z\a—logtp(k))’ K< OO}

< P {SupeASk—klogga()\) > en()\a—logap(k)}. (17)
k>n

To take the final step, we notice that the sequence of random variables

eASk—klog <p()\)’ k> 1,

with respect to the flow of o-algebras .7 = o{&1, ..., &}, k > 1, forms a martin-
gale. (For more details, see Chap. 7 and, in particular, Example 2 in Sect. 1 therein.)
Then it follows from inequality (8) in Sect. 3, Chap. 7, that

P {Sup e)\Skfkloggo()\) > en()\alogap()\))} < efn()\afloggp()\))’
k>n

and consequently (assuming (16)) we obtain the inequality

P {sup S > a} < g Pazlogp(N)) (18)

k>n

Let a > m. Since the function f(A) = aX — log () has the properties f(0) = 0,
f'(0) > 0, there is a A > 0 for which (16) is satisfied, and consequently we obtain
from (18) that if a > m, then

P {supSk > Cl} < efnsupA>O[Aafloggo()\)] _ ean(u). 19)
on k
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Similarly, if a < m, then
Sk —nsu [Aa—log p(N)] —nH(a)
Pisup— <ap<e Pa<o 8Pl = ¢ . (20)
>n k

From (19) and (20) we obtain

P {sup
k>n

& _m‘ > E} < 2~ min[H(m—E),H(m-‘ra)]-n. (21)

Remark 2. The fact that the right-hand sides of inequalities (11) and (19) are the
same leads us to suspect that this situation is not accidental. In fact, this expectation
is concealed in the property that the sequences (Si/k),<x<n form, for every n < N,
reversed martingales (see Problem 5 in Sect. 1, Chap. 7, and Example 4 in Sect. 11,
Chap. 1, Vol. 1).

2.
1.

PROBLEMS

Carry out the proof of inequalities (8) and (20).

2. Verify that under condition (3), the function () is convex (from below) on the

interior of the set A (see (5)) (and strictly convex provided & is nondegenerate)
and infinitely differentiable.

Assuming that ¢ is nondegenerate, prove that the function H(a) is differentiable
on the whole real line and is convex (from below).

Prove the following inversion formula for Cramér’s transform:

YY) = suplha — Hia)

(for all A, except, possibly, the endpoints of the set A = {A: () < oo}).

.LetS, = & + - + &, where &1,...,&,, n > 1, are independent identically

distributed simple random variables with E&; < 0, P{&; > 0} > 0. Let p(\) =
Ee?tandinfy (M) =p (0 < p < 1).
Show that the following result (Chernoff’s theorem) holds:
1
lim — log P{S, > 0} = log p. (22)
n
Using (22), prove that in the Bernoulli scheme (P{¢; = 1} = p, P{&{; =0} = ¢)

1
lim - log P{S, > nx} = —H(x), (23)
n

for p < x < 1, where (cf. notation in Sect. 6, Chap. 1, Vol. 1)

— X

1
H(x) :xlog{ + (1 —x)log ]
p
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7. LetS, =& + -+ &, n> 1, where &1, &5, . .. are independent identically dis-
tributed random variables with E¢; = 0, Var&; = 1. Let (x,),>1 be a sequence
such that x,, — oo and % — 0 as n — oo. Show that

»‘3
P{s, > xn\/ﬁ} _ 6—7(1+yn)’

where y, — 0, n — oo.
8. Derive from (23) that in the Bernoulli case (P{¢; = 1} = p, P{& = 0} = ¢)
we have:
(a) Forp <x < 1landx, =n(x—p),

P{S, > np +x,} = exp{—nH(p + %)(1 + 0(1))}; (24)

(b) For x, = a,/npq with a, — oo, a,/\/n — 0,

2
Xn

2npq

P{S, > np+x,} = exp{— (1+ 0(1))}. (25)

Compare (24) with (25) and both of them with the corresponding results in Sect. 6
of Chap. 1, Vol. 1.



Chapter 5 )

Stationary (Strict Sense) Random S
Sequences and Ergodic Theory

In the strict sense, the theory [of stationary stochastic processes] can be stated outside the
framework of probability theory as the theory of one-parameter groups of transformations
of a measure space that preserve the measure; this theory is very close to the general theory
of dynamical systems and to ergodic theory.

Encyclopaedia of Mathematics [42, Vol. 8, p. 479].

1. Stationary (Strict Sense) Random Sequences:
Measure-Preserving Transformations

1. Let (Q2,.#,P) be a probability space and £ = (&1,&2,...) a sequence of ran-
dom variables or, as we say, a random sequence. Let 6, denote the sequence

(€k+1,fk+2, .. )

Definition 1. A random sequence £ is stationary (in the strict sense) if the probabil-
ity distributions of ;¢ and & are the same for every k > 1:

P((&1,62,...) € B) = P((§t1,&k+2,...) €B), B € B(R™).

The simplest example is a sequence & = (£1,&a, . . .) of independent identically
distributed random variables. Starting from such a sequence, we can construct a
broad class of stationary sequences 1 = (71,72, . . .) by choosing any Borel function
g(xl, e ,)Cn) and setting Nk = g(fk, §k+1, AN 7£k+n—1)'

If £ = (&,&,...) is a sequence of independent identically distributed random
variables with E |£1| < oo and E §; = m, then the strong law of large numbers tells
us that, with probability 1,

7§1+.'.+§"—>m, n — oo.

© Springer Science+Business Media, LLC, part of Springer Nature 2019 33
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In 1931, Birkhoff [6] obtained a remarkable generalization of this fact, which was
stated as a theorem of statistical mechanics dealing with the behavior of the “relative
residence time” of dynamical systems described by differential equations admitting
an integral invariant (“‘conservative systems”). Soon after, in 1932, Khinchin [47]
obtained an extension of Birkhoff’s theorem to a more general case of “stationary
motions of a multidimensional space within itself preserving the measure of a set.”

The following presentation of Birkhoff’s and Khinchin’s results will combine the
ideas of the theory of “dynamical systems” and the theory of “stationary in a strict
sense random sequences.”

In this presentation we will primarily concentrate on the “ergodic” results of
these theories.

2. Let (Q2, %, P) be a (complete) probability space.

Definition 2. A transformation 7 of € into itself is measurable if, for every A € F,
T7'A={w:TwcA} e Z.

Definition 3. A measurable transformation T is a measure-preserving transforma-
tion (or morphism) if, for every A € F,

P(T7'A) = P(A).

Let T be a measure-preserving transformation, 7" its nth iterate, and &; = &; (w)
a random variable. Set &,(w) = & (7" 'w), n > 2, and consider the sequence
& = (&,&2,...). We claim that this sequence is stationary.

In fact, let A = {w: £ € B} and A; = {w: 6:& € B}, where B € #(R>). Then
w € Ay if and only if Tw € A, i.e., Ay = T~'A. But P(T~'A) = P(A), hence
P(A1) = P(A). Similarly, P(A;) = P(A) for any Ay = {w: 6§ € B}, k > 2.

Thus we can use measure-preserving transformations to construct stationary (in
strict sense) random sequences.

In a certain sense, there is a converse result: for every stationary sequence £
considered on (£2,.%,P) we can construct a new probability space (Q,#,P), a
random variable £;(@), and a measure-preserving transformation T, such that the
distribution of £ = {£;(©),& (T®),...} coincides with the distribution of & =
[61(w), &2(w), .. . ) ]

In fact, take € to be the coordinate space R>, and set F = Z(R>), P = P¢,
where P¢(B) = P{w : £ € B}, B € %(R>). The action of T on { is given by

T(x1,x2,...) = (x2,%x3,...).
If o = (x1,x2,...), set
(@) =x, &@)=&(T""2), n>2
Now let A = {@: (x1,...,x) € B}, B € Z(R"), and

T7'A = {(,:J (XQ, e ,xk+1) € B}.
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Then the property of being stationary means that

P(A) = Pw: (€1, -, &) € B} = P{w: (&, &) € B} = P(T14),

i.e., T is a measure-preserving transformation. Since Is{dz: (51, e ,ék) € B} =
P{w: (&,...,&) € B} for every k, it follows that £ and € have the same distribu-
tion.

What follows are some examples of measure-preserving transformations.

EXAMPLE 1. Let Q = {w1, ..., w,} consist of n points (a finite number), n > 2,
let .% be the collection of its subsets, and let Tw; = wiy1,1 < i < n— 1, and
T, = w1.If P(w;) = 1/n, then the transformation T is measure-preserving.

EXAMPLE 2. If Q = [0,1), # = Z([0,1)), P is the Lebesgue measure, A € [0,1),
then Tx = (x + A) mod 1 is a measure-preserving transformation.

Let us consider the physical hypotheses that lead to the consideration of measure-
preserving transformations.

Suppose that € is the phase space of a system that evolves (in discrete time)
according to a given law of motion. If w is the state at instant n = 1, then 7"w,
where T is the translation operator induced by the given law of motion, is the state
attained by the system after n steps. Moreover, if A is some set of states w, then
T7'A = {w: Tw € A} is, by definition, the set of states w that lead to A in one step.
Therefore, if we interpret {2 as an incompressible fluid, the condition P(T~'A) =
P(A) can be thought of as the rather natural condition of conservation of volume.
(For the classical conservative Hamiltonian systems, Liouville’s theorem asserts that
the corresponding transformation T preserves the Lebesgue measure.)

3. One of the earliest results on measure-preserving transformations was Poincaré’s
recurrence theorem [63].

Theorem 1. Ler (Q, F, P) be a probability space, let T be a measure-preserving
transformation, and let A € %. Then, for almost every point w € A, we have
T'w € A for infinitely many n > 1.

PROOF. Let C = {w € A: T"w ¢ Aforalln > 1}. Since CNT"C = @ for
all n > 1, we have T-"C N T~ C = T~"(CNT"C) = @. Therefore the
sequence {T~"C} consists of disjoint sets of equal measure. But >~ P(C) =
2o P(T™"C) < P(2) = 1, and consequently P(C) = 0. Therefore, for almost
every point w € A, for at least one n > 1, we have T"w € A. We will show that,
consequently, 7"w € A for infinitely many n.

Let us apply the preceding result to T*, k > 1. Then for every w € A\ N, where
N is a set of probability zero, which is the union of the corresponding sets related
to the various values of k, there is an n; such that (T%)™w € A. It is then clear that
T"w € A for infinitely many 7. This completes the proof of the theorem.

O
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Corollary. Let {(w) > 0. Then

o0

Zf(Tkw) =00 (P-as.)

k=0

on the set {w: £(w) > 0}.
In fact, let A, = {w: £(w) > 1/n}. Then, by the theorem, > = &(T*w) = oo
(P-a.s.) on A,,, and the required result follows by letting n — oo.

Remark. The theorem remains valid if we replace the probability measure P by
any finite measure g with u(Q) < oco.

4. PROBLEMS

1. Let T be a measure-preserving transformation and £ = £(w) a random variable
whose expectation E £(w) exists. Show that E {(w) = E{(Tw).

2. Show that the transformations in Examples 1 and 2 are measure-preserving.

3. LetQ =[0,1), F = #(]|0,1)), and let P be a measure whose distribution func-
tion is continuous. Show that the transformations 7x = M\x, 0 < A < 1, and

Tx = x? are not measure-preserving.
4. Let ) be the set of all sequences w = (...,w_1,wp,ws,...) of real numbers, F#
the o-algebra generated by measurable cylinders {w: (w, ..., wktn—1) € Bul}s

wheren =1,2,...,k=0,%+1,42,...,and B, € (R"). Let P be a probability
measure on (),.%), and let T be the two-sided transformation defined by

T(...,w_1,w0,w1,...) = (..,wo, w1, wa,...).
Show that T is measure-preserving if and only if
P{w: (wo,...,wn—1) € By} = P{w: (wky ..., Wktn-1) € B}

foralln=1,2,...,k=0,+1,+2,...,and B, € Z(R").

5. Let &y, &1, ... be a stationary sequence of random elements taking values in a
Borel space S (see Definition 9 in Sect. 7, Chap. 2, Vol. 1). Show that one can con-
struct (maybe on an extended probability space) random elements £_1,£_o, . ..
with values in S such that the two-sided sequence ...,£_1,&g,&q, ... 1S station-
ary.

6. Let T be a measurable transformation on (§2,.%,P), and let & be a w-system
of subsets of 2 that generates & (i.e., 7(&) = ). Prove that if the equality
P(T~1A) = P(A) holds forall A € &, then it holds also forall A € .F (= m(&)).

7. Let T be a measure-preserving transformation on (£2,.%, P), and let ¢ be a sub-
o-algebra of .%. Show that for any A € .F

P(A|9)(Tw) = P(TT'A| T '9)(w) (P-as.). (1)

In particular, let Q = R°° be the space of numerical sequences w = (wg, w1, - .- )
and & (w) = wy. Let T be the shift transformation T'(wo, w1, ... ) = (w1,wa,...)
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(in other words, if £ (w) = wy, then & (Tw) = wy+1). Then (1) becomes

P(A]&)(Tw) =P(TT'A&41)(w)  (P-as)).

2. Ergodicity and Mixing

1. In this section, T denotes a measure-preserving transformation on the probability
space (2, %, P).

Definition 1. A set A € . is invariant if T™1A = A. A set A € F is almost
invariant if A and T~1A differ only by a set of measure zero, i.e., P(AAT~1A) = 0.

It is easily verified that the classes .# and .#* of invariant or almost invariant
sets, respectively, are o-algebras.

Definition 2. A measure-preserving transformation 7 is ergodic (or metrically tran-
sitive) if every invariant set A has measure either zero or one.

Definition 3. A random variable n = n(w) is invariant (or almost invariant) if
n(w) = n(Tw) for all w €  (or for almost all w € ).

The following lemma establishes a connection between invariant and almost in-
variant sets.

Lemma 1. If A is an almost invariant set, then there is an invariant set B such that
P(AAB) =0.

PROOF. Let B = limsup T~"A. Then T~ 'B = limsup 7~ "t*VA = B,ie.,B € .7.
It is easily seen that A A B C |2 o (T*A AT~ *+DA). But
P(T*AAT-DA) = PAAT!A) = 0.

Hence P(A A B) = 0.
O

Lemma 2. A transformation T is ergodic if and only if every almost invariant set
has measure zero or one.

PROOF. Let A € #*; then, by Lemma 1, there is an invariant set B such that
P(A A B) = 0. But T is ergodic, and therefore P(B) = 0 or 1. Therefore P(A) = 0
or 1. The converse is evident, since . C .#*,

O

Theorem 1. Let T be a measure-preserving transformation. Then the following con-
ditions are equivalent:

(1) T is ergodic;
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(2) Every almost invariant random variable is P-a.s. constant,
(3) Every invariant random variable is P-a.s. constant.

PROOF. (1) & (2). Let T be ergodic and £ almost invariant, i.e., {(w) = £(Tw)
(P-a.s.). Then for every ¢ € R we have A, = {w: &(w) < ¢} € *, and then
P(A.) = 0or 1 by Lemma 2. Let C = sup{c: P(A;) = 0}. Since A, T Q asc T o
and A, | @ as ¢ | —oo, we have |C| < co. Then

P{w: £w) <C}=P{G {aw) sc—i}} ~0.

n=1

And, similarly, P{w: {(w) > C} = 0. Consequently, P{w: {(w) = C} = 1.

(2) = (3). Evident.

(3) = (1). Let A € .; then 4 is an invariant random variable, and therefore
(P-as.) Iy =0orly =1, whence P(A) = 0or 1.

O

Remark 1. The conclusion of the theorem remains valid in the case where “random
variable” is replaced by “bounded random variable.”

We illustrate the theorem with the following example.

EXAMPLE. LetQ = [0,1), # = %([0, 1)), let P be the Lebesgue measure, and let
Tw = (w+ A) mod 1. Let us show that T is ergodic if and only if A is irrational.
Let £ = £(w) be an invariant random variable with E £2(w) < co. Then we know
that the Fourier series Y~ __ ¢,e?™™ of {(w) converges in the mean square sense,
> |c,,\2 < 00, and, because T is a measure-preserving transformation (Example 2,
Sect. 1), we have (Problem 1, Sect. 1) that, since the random variable £ is invariant,

Cn = E f(w)ef%ring(w) —E g(Tw)ef%rinTw _ 6727”'”)\ E g(Tw)ef%rinw

— e—27rink Eg(w>e—2ﬂinw — cne—Zm‘n}\.

Thus, ¢, (1 —e~2™*) = 0. By hypothesis, A is irrational, and therefore e=2™"* £ |
for all n # 0. Therefore ¢, = 0, n # 0, {(w) = ¢¢ (P-a.s.), and T is ergodic by
Theorem 1.

On the other hand, let A be rational, i.e., A\ = k/m, where k and m are integers.

Consider the set
2m—2

2k 2k +1
A= — < .
k_LJO{w Qm_w< 2m }

It is clear that this set is invariant; but P(A) = % Consequently, T is not ergodic.
2. Definition 4. A measure-preserving transformation is mixing (or has the mixing
property) if, for all A and B € %,

lim P(ANT"B) = P(A) P(B). (1)

n—oo

The following theorem establishes a connection between ergodicity and mixing.
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Theorem 2. Every mixing transformation T is ergodic.
PROOF. LetA € .#,B € .¢.Then B=T""B,n > 1, and therefore

P(ANT"B) = P(ANB)

for all n > 1. Because of (1), P(A N B) = P(A) P(B). Hence we find, when A = B,
that P(B) = P?(B), and consequently P(B) = 0 or 1. This completes the proof. [

3. PROBLEMS

1. Show that a random variable ¢ is invariant if and only if it is .#-measurable.

2. Show that a set A is almost invariant if and only if P(77'A\ A) = 0.

3. Show that a transformation 7 is mixing if and only if, for all random variables &
and ) with E £2 < oo and E7? < oo,

E&(T"wn(w) — E€w) Enw), n— oo,

4. Give an example of a measure-preserving ergodic transformation that is not mix-
ing.

5. Let T be a measure-preserving transformation on (€2, .%, P). Let 7 be an algebra
of subsets of 2 and o (%) = .%. Suppose that Definition 1 requires only that the
property

nlgrolo P(ANT™"B) =P(A) P(B)
be satisfied for sets A and B in 7. Show that this property will then hold for all
A and B in .¥ = o(&/) (and therefore the transformation 7 is mixing).
Show that this statement remains true if .27 is a w-system such that 7(«7) = %#.

6. Let A be an almost invariant set. Show that w € A (P-a.s.) if and only if T"w € A
foralln =1,2,... (cf. Theorem 1 in Sect. 1.)

7. Give examples of measure-preserving transformations 7 on (€2,.%, P) such that
(a) A € % does not imply that TA € % and (b) A € .F and TA € ¥ do not
imply that P(A) = P(TA).

8. Let T be a measurable transformation on (€2, .%), and let & be the set of proba-
bility measures P with respect to which T is measure-preserving. Show that:

(a) The set & is convex;

(b) T is an ergodic transformation with respect to P if and only if P is an
extreme point of &2 (i.e., P cannot be represented as P = Ay P; +X2 Py
with Ay >0, A2 >0, \1 + X2 =1,Py 7& P,, and Pl,Pg c ).

3. Ergodic Theorems
1. Theorem 1 (Birkhoff and Khinchin). Let T be a measure-preserving transforma-
tion and £ = &(w) a random variable with E |£| < co. Then (P-a.s.)

n—1

1i£ﬂ%2£(TkW) =E(¢]1), (1)
k=0
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where 7 is the invariant o-algebra. If also T is ergodic, then (P-a.s.)
1 n—1
lim — T'w) = E¢. 2
m ; §(T'w) = E¢ @)

The proof given below is based on the following proposition, whose simple proof
was given by Garsia [28].

Lemma (Maximal Ergodic Theorem). Let T be a measure-preserving transforma-
tion, let £ be a random variable with E || < oo, and let

Si(w) = () +&§(Tw) + - +E(T" ),
Mi(w) = max{0, S1(w),...,Sk(w)}.

Then
El§(w)p,>03(w)] >0

foreveryn > 1.

PROOF. If n > k, we have M, (Tw) > Si(Tw), and therefore &{(w) + M, (Tw) >
E(W)+Sk(Tw) = Si41(w). Since itis evident that {(w) = S1(w) > S1(w)—M,(Tw),
we have

¢(w) > max{S;(w),...,S(w)} — M, (Tw).

Therefore, since {M,(w) > 0} = {max(S;(w),...,S,(w)) > 0},

BlE(w)l, >0y ()] = E[(max(S1(w), .., Su(w)) = Ma(Tw)) (1,0 (w)]
> E{(My(w) — Mu(Tw)) {1, (w)>01 } 2 E{My(w) — M, (Tw)} = 0,

where we have used the fact that if T is a measure-preserving transformation, then
EM,(w) = EM,(Tw) (Problem 1 in Sect. 1).

This completes the proof of the lemma.

O

PROOF OF THEOREM 1. Let us suppose that E(¢ | .#) = 0 (otherwise, replace ¢ by

§—E(¢])).
Let 77 = lim sup(S,/n) and n = lim inf(S,/n). It will be enough to establish that

0<n<n<0 (P-as.).

Consider the random variable 77 = 7j(w). Since 7j(w) =
invariant, and consequently, for every £ > 0, the set A,
invariant. Let us introduce the new random variable

5*(0‘)) = (g(w) - E':)IAI{ (w)v

7(Tw), the variable 7] is
= {7j(w) > €} is also



3 Ergodic Theorems 41
and set
SZ(W) :g*(w)_‘_"'—i_f*(Tk_lw)a MZ(W) :maX(O, SI) ey Slt)

Then, by the lemma,
Bl I{mr>03] >0

forevery n > 1. Butas n — oo,

* o * * _ ). ‘Sl:
{M; >0} = {1121?2(”5,( > 0} 0 {supSk > 0} = {bup e 0}

k>1 k>1

S
= {supk > 8} NA; =A,,
1 k

where the last equation follows because sup;~1(S; /k) > and A. = {w: 7] > €}.
Moreover, E |£*| < E |£| + &. Hence, by the dominated convergence theorem,

0 < E[§"I{pz>0y] — E[§7L4].
Thus,
0 <E[¢"Ia.] =E[(§ —e)la.] = E[¢ls.] — e P(A)
= E[E(|/)s.] —P(A:) = —eP(A2),
so that P(A.) = 0, and therefore P(77 < 0) = 1.
Similarly, if we consider —&(w) instead of £(w), we find that

lim sup <S"> = — liminf S =-n
n n -
and P(—n <0) =1,i.e.,P(n > 0) = 1. Therefore 0 < 5 < 7 < 0 (P-a.s.), and the
first part of the theorem is established. B
To prove the second part, we observe that since E(¢ | %) is an invariant random
variable, we have E(¢ | .#) = E¢ (P-a.s.) in the ergodic case.
This completes the proof of the theorem.
O

Corollary. A measure-preserving transformation T is ergodic if and only if, for all
AandB € %,

Jim & Z_: P(ANT *B) = P(A)P(B). 3)

n n
k=0

To prove the ergodicity of 7, we let A = B € .# in (3). Then AN T~ *B = B, and
therefore P(B) = P?(B), i.e., P(B) = 0 or 1. Conversely, let T be ergodic. Then, if
we apply (2) to the random variable £ = Ip(w), where B € %, we find that (P-a.s.)
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n—1
1
lim > Irg(w) = P(B).
k=0

If we now integrate both sides over A € .# and use the dominated convergence
theorem, we obtain (3), as required.

2. We now show that, under the hypotheses of Theorem 1, there is not only almost
sure convergence in (1) and (2), but also convergence in the mean. (This result will
be used subsequently in the proof of Theorem 3.)

Theorem 2. Let T be a measure-preserving transformation, and let £ = £(w) be a
random variable with E || < co. Then

n—1

iZ§(T"w)—E(§|f)‘_>o7 n— 00. (4)

k=0

E

If also T is ergodic, then

iZ§(Tkw)—E§’—>o, n — 0. 5)

PROOF. For every € > 0 there is a bounded random variable 7 (|n(w)| < M) such
that E|¢ — n| < e. Then

E ‘i S €(Th) — E(€] 5) ‘ <E ‘i S (€(Tw) - (1))
k=0 =
n—1
+E rllZn(Tkw)—E(n|/)‘+E|E(§J)_E(mj)_ 6)
k=0

Since |n| < M, by the dominated convergence theorem and using (1), we find that
the second term on the right-hand side of (6) tends to zero as n — oo. The first
and third terms are each at most . Hence, for sufficiently large n, the left-hand side
of (6) is less than 3¢, so that (4) is proved. Finally, if T is ergodic, then (5) follows
from (4) and the remark that E(¢ | %) = E£ (P-a.s.).

This completes the proof of the theorem.

O

3. We now turn to the question of the validity of the ergodic theorem for station-
ary (in strict sense) random sequences £ = (&1,&s,...) defined on a probabil-
ity space (2, #,P). In general, (Q, %, P) need not carry any measure-preserving
transformations, so that it is not possible to apply Theorem 1 directly. However, as
we observed in Sect. 1, we can construct a coordinate probability space (Q J P)
random variables f (517 52, ...), and a measure-preserving transformation T such
that &,(@) = £, (T"~'@) and the distributions of £ and £ are the same. Since such
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properties as almost sure convergence and convergence in the mean are defined
only for probability distributions, from the convergence of (1/n) >/_, & (TF @)
(P-a.s. and in the mean) to a random variable 7 it follows that (1/n) > ;_, §k( )

also converges (P-a.s. and in the mean) to a random variable 7 such that 77 7. It
follows from Theorem 1 that if E|€;| < oo, then 7 = E(£;|.#), where .7 is a
collection of invariant sets (E is the expectation with respect to the measure P) We
now describe the structure of 7).

Definition 1. A set A € % is invariant with respect to the sequence ¢ if there is a
set B € (R>) such that forn > 1

A= {UJ: (fnv §n+1; ) S B}.
The collection of all such invariant sets is a o-algebra, denoted by 7.

Definition 2. A stationary sequence ¢ is ergodic if the measure of every invariant
set is either 0 or 1.

Let us now show that if the random variable 7 is the limit (P-a.s. and in the
mean) of - 37 | &(w), n — oo, then it can be taken equal to E(&; | 7). To this
end, notice that we can set

1 n
n(w) =limsup = * & (w). (7
n k:l

It follows from the definition of limsup that for the random variable 7(w) so
defined, the sets {w: n(w) < y}, y € R, are invariant and therefore 7 is .Z-

measurable. Now, let A € 7. Then, since E) Zk 16— 77‘ — 0, we have for n

defined by (7)
1Z/gde—>/ndP. (8)
Mi=i/a A

Let B € Z(R*) be such that A = {w: (&, &k+1,.-.) € B} for all k > 1. Then
since £ is stationary,

/fde:/ fde:/ fldP:/gldP.
A {w: (&6&kt1,---)EB} w: (§1,€2,...)EB} A

Hence it follows from (8) that for all A € 7,

/gldP:/ndP,
A A

which implies (see (1) in Sect. 7, Chap. 2, Vol. 1) that (1) being .#;-measurable) n =
E(&1 | H). Here E(&1 | S¢) = E& if € is ergodic.
Therefore we have proved the following theorem.
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Theorem 3 (Ergodic Theorem). Let & = (£1,&a, . . .) be a stationary (strict sense)
random sequence with E |€1| < co. Then (P-a.s. and in the mean)

R
hm;ka@:E@jﬁ)
k=1
If € is also an ergodic sequence, then (P-a.s. and in the mean)
im L3 6 (w) = E¢
im — = )
n 2 k(w 1

4. PROBLEMS

1. Let £ = (&1, &, ...) be a Gaussian stationary sequence with E§, = 0 and
covariance function R(n) = E &4.,&. Show that R(n) — 0 is a sufficient con-
dition for the measure-preserving transformation related to £ to be mixing (and,
hence, ergodic).

2. Show that for every sequence £ = (£1,&a, . ..) of independent identically dis-
tributed random variables the corresponding measure-preserving transformation
is mixing.

3. Show that a stationary sequence ¢ is ergodic if and only if

%ngm@WQﬁW&m@mm (P-as.)
i=1

for every B € B(R¥), k=1,2,....

4. Let P and P be two measures on the space (©,.%) such that the measure-
preserving transformation 7 is ergodic with respect to each of them. Prove that,
then, either P =P or P L P.

5. Let T be a measure-preserving transformation on (§2,.%,P) and </ an algebra
of subsets of 2 such that o(&/) = Z. Let

n—1
n 1
k=0

Prove that T is ergodic if and only if one of the following conditions holds:
@ 1" Py P(A) forany A € o7;

(b) lim 2 S P(ANT*B) = P(A) P(B) for all A, B € </;

© 1" P P(A) forany A € Z.

6. Let T be a measure-preserving transformation on (£2,.%,P). Prove that T is
ergodic (with respect to P) if and only if there is no measure P # P on (©2,.7)
such that P <« P and T is measure-preserving with respect to P.

7. (Bernoullian shifts.) Let S be a finite set (say, S = {1,2,...,N}), and let Q =
S°° be the space of sequences w = (wp,ws, ...) with w; € S. Set & (w) = wy,
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10.

11.

and define the shift transformation T'(wg, w1, ...) = (w1,wa,...), or, in terms
of &k, & (Tw) = wit1 if & (w) = wy. Suppose that fori € {1,2,..., N} there are
nonnegative numbers p; such that 25\7:1 pi = 1(.e., (p1,...,pn) is a probability
distribution). Define the probability measure P on (§°°, #(5*°)) (see Sect. 3,
Chap. 2, Vol. 1) such that

Pt (@roeeesk) = (1, oy 10)} = Puy - P

In other words, this probability measure is introduced to provide the indepen-
dence of &y(w), &1 (w), - . . . The shift transformation T (relative to this measure
P) is called the Bernoullian shift or the Bernoulli transformation.

Show that the Bernoulli transformation is mixing.

. Let T be a measure-preserving transformation on (€2,.#, P). Use the notation

T"% ={T"A: A € .F}. We say that the o-algebra
oo
F o= \T"F
n=1

is trivial (P-trivial) if every set in .%_, has measure 0 or 1 (such transfor-
mations are referred to as Kolmogorov transformations). Prove that the Kol-
mogorov transformations are ergodic and, what is more, mixing.

. Let1 < p < o0, and let T be a measure-preserving transformation on a proba-

bility space (€2, .#, P). Consider a random variable &(w) € LP(Q2,.%,P).
Prove the following ergodic theorem in L”(),.%,P) (von Neumann). There
exists a random variable 1(w) such that

n—1

LS e~ n(w)
k=0

p

E —0, n— oo.

Borel’s normality theorem (Example 3 in Sect. 3, Chap. 4) states that the fraction
of ones and zeros in the binary expansion of a number w in [0, 1) converges to
% almost everywhere (with respect to the Lebesgue measure). Prove this result
by considering the transformation 7: [0,1) — [0, 1) defined by

T(w) =2w (mod 1),

and using the ergodic Theorem 1.
As in Problem 10, let w € [0, 1). Consider the transformation 7': [0,1) — [0,1)

defined by
T(w) 0, ifw=0,
w =
{1/}, ifw#0,

where {x} is the fractional part of x.
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Show that T preserves the Gaussian measure P = P(-) on [0, 1) defined by

P(A) = 1022/,4%’ A B(0,1)).

12. Show by an example that Poincaré’s recurrence theorem (Subsection 3 of
Sect. 1) is, in general, false for measurable spaces with infinite measure.



Chapter 6 )
Stationary (Wide Sense) Random S
Sequences: L2-Theory

The [spectral] decomposition provides grounds for considering any stationary stochastic
process in the wide sense as a superposition of a set of non-correlated harmonic oscillations
with random amplitudes and phases.

Encyclopaedia of Mathematics [42, Vol. 8, p. 480].

1. Spectral Representation of the Covariance Function

1. According to the definition given in the preceding chapter, a random sequence
& = (&1,&2,...) is stationary in the strict sense if, for every set B € Z(R>°) and
every n > 1,

P{(&1,&2,...) € B} = P{(&wt1,&n+2,- ) € B} (D

It follows, in particular, that if E 7 < oo, then E &, does not depend on n:
E é-n =E 51 ’ (2)

and the covariance Cov(&,1m&) = E(&am — E&utm) (& — EE,) depends only
on m:

COV(é-nera gn) = COV(§1+m7 §1) (3)

In this chapter we study sequences that are stationary in the wide sense (having
finite second moments), namely, those for which (1) is replaced by the (weaker)
conditions (2) and (3).

The random variables &, are understood to be defined forn € Z = {0, +1, ...}
and to be complex-valued. The latter assumption not only does not complicate the
theory but makes it more elegant. It is also clear that results for real random variables
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can easily be obtained as special cases of the corresponding results for complex
random variables.

Let H? = H?(§),.7, P) be the space of (complex) random variables £ = « + i3,
a, B € R, with E [€]2 < oo, where [€]2 = o2 + 2. 1f € and ) € H?, then we set

(&mn) = E&m, “)
where 77 = v — id is the complex conjugate of n = - + id, and
lell = (¢.)"2. (5)

As for real random variables, the space H? (more precisely, the space of equiva-
lence classes of random variables; cf. Sects. 10 and 11 of Chap. 2, Vol. 1) is complete
under the scalar product (&, ) and norm ||£||. In accordance with the terminology of
functional analysis, H? is called the complex (or unitary) Hilbert space (of random
variables considered on the probability space (2, .%#,P)).

If ¢, n € H? their covariance is

Cov(&,m) = E(§ —E&(n—En). (6)
It follows from (4) and (6) that if E£ = En = 0, then
Cov(&,m) = (&n). (7

Definition. A sequence of complex random variables & = (&,), ¢z with E|,]? <
00, n € 7, is stationary (in the wide sense)if, for all n € 7Z,

Egn = EgOa
COV(karn, Ek) = COV(f,17 fo), kelZ. (8)

As a matter of convenience, we shall always suppose that E £y = 0. This involves
no loss of generality but does make it possible (by (7)) to identify the covariance
with the scalar product and, hence, to apply the methods and results of the theory of
Hilbert spaces.

Let us write

R(n) = Cov(¢&,, &), n€Z, ©)]

and (assuming R(0) = E|&|? # 0)
nez. (10)

We call R(n) the covariance function and p(n) the correlation function of the se-
quence £ (assumed stationary in the wide sense).
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It follows immediately from (9) that R(n) is positive semidefinite, i.e., for all

complex numbers ay,...,a, and ty, ..., t, € Z, m > 1, we have
m
> aaR(t— 1) >0, (11)
ij=1

since the left-hand side of (11) is equal to || > (cw&,)||. It is then easy to deduce
(either from (11) or directly from (9)) the following properties of the covariance
function (see Problem 1):

R(0) >0, R(—n)=R(n), [R(n)|<R(0),
IR(n) — R(m)|? < 2R(0)[R(0) — Re R(n — m)]. (12)

2. Let us give some examples of stationary sequences & = (£, )ncz. (From now on,
the words “in the wide sense” and the statement n € Z will often be omitted.)

EXAMPLE 1. Let £, = & - g(n), where E¢y = 0, EE2 = 1, and g = g(n) is

a function. The sequence £ = (§,) will be stationary if and only if g(k + n)g(k)
depends only on n. Hence it is easy to see that there is a A such that

g(n) = g(0)e™".

Consequently, the sequence of random variables
&n = &0 8(0)e™
is stationary with
R(n) = [g(0)[Pe™".
In particular, the random “constant” £, = &g is a stationary sequence.
Remark. In connection with this example, notice that, since ¢ = "M 270) f —

+1,+£2,..., the (circular) frequency A is defined up to a multiple of 27. Following
tradition, we will assume henceforth that A € [—, 7].

EXAMPLE 2 (An almost periodic sequence). Let

N
&= we™, (13)
k=1

where z1,...,zy are orthogonal (E zzp = 0,10 # J) random variables with zero
means and E || = a,f >0 -7 < M<mk=1,...,N; N\ # N\, i # j. The
sequence & = (&,) is stationary with

N

R(n) = ope™". (14)
k=1
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As a generalization of (13) we now suppose that

&= we™, (15)

k=—o00

where zx, k € Z, have the same properties as in (13). If we suppose that
Yoo 02 < oo, the series on the right-hand side of (15) converges in mean
square and

R(n) = Z oZe™n, (16)

k=—o0

Let us introduce the function

F)= > df (17)

{k: M <A}

Then the covariance function (16) can be written as a Lebesgue—Stieltjes integral:

R(n) = / "M ap(\) (: /[_W ) eM"dF(A)). (18)

—Tr

The stationary sequence (15) is represented as a sum of “harmonics” ™" with
“frequencies” )\, and random “amplitudes” z; of “intensities” U,f =E |zk|2. Conse-
quently, the values of F(X) provide complete information on the “spectrum” of the
sequence &, i.e., on the intensity with which each frequency appears in (15). By (18),
the values of F(\) also completely determine the structure of the covariance func-
tion R(n).

Up to a constant multiple, a (nondegenerate) F()) is evidently a distribution
function, which in the examples considered so far has been piecewise constant. It
is quite remarkable that the covariance function of every stationary (wide sense)
random sequence can be represented (see theorem in Subsection 3) in the form
(18), where F(\) is a distribution function (up to normalization) whose support is
concentrated on [—, ), i.e., F(A) =0 for A < —w and F(\) = F(x) for A > 7.

The result on the integral representation of the covariance function, if compared
with (15) and (16), suggests that every stationary sequence also admits an “integral”
representation. This is in fact the case, as will be shown in Sect. 3 using what we
shall learn to call stochastic integrals with respect to orthogonal stochastic measures
(Sect.2).

EXAMPLE 3 (White noise). Let ¢ = (g,) be an orthonormal sequence of random
variables, E¢, = 0, E¢;g; = §;;, where §;; is the Kronecker delta. Such a sequence
is evidently stationary, and

1, n=0,
R(”)—{o, n 0.
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Observe that R(n) can be represented in the form

RM%:/WJMMKM, (19)
where \
FO) = [ foav ) = % r<i<m. 20)

—Tr

Comparison of the spectral functions (17) and (20) shows that, whereas the spec-

trum in Example 2 is discrete, in the present example it is absolutely continuous

with constant “spectral density” f(A) = 1/2x. In this sense we can say that the se-

quence ¢ = (&,) “consists of harmonics of equal intensities.” It is just this property

that has led to calling such a sequence € = (&,,) “white noise” by analogy with white
light, which consists of different frequencies with the same intensities.

EXAMPLE 4 (Moving Averages). Starting from the white noise £ = (&,) introduced
in Example 3, let us form the new sequence

gn: Z AkEn—rk, (21)

k=—o00

where a; are complex numbers such that >~ |ax|? < co. From (21) we obtain

Cov(&ngm, &m) = Cov(&n, &o) = Z QptkQy,

k=—00

so that £ = (&) is a stationary sequence, which we call the sequence obtained from
€ = (ex) by a (two-sided) moving average.
In the special case where the a; of negative index are zero, i.e.,

00
gn = § AkEn—k;
k=0

the sequence £ = (&,) is a one-sided moving average. If, in addition, @, = 0 for
k> p,ie.,if
é-n =daoep ta1gp—1 +--- + ApEn—p, (22)

then & = (&,) is a moving average of order p.
It can be shown (Problem 3) that (22) has a covariance function of the form
R(n) = ["_e™f()\) d), where the spectral density is

1 .
FO) = o IP(e™™)P? (23)

with
P(z) =ap+a1z+ -+ a2
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EXAMPLE 5 (Autoregression). Again let ¢ = (g,) be white noise. We say that a
random sequence £ = (&,) is described by an autoregressive model of order ¢ if

fn + blfn—l + -+ bq&n—q = é&n- (24)

Under what conditions on by, ..., b, can we say that (24) has a stationary solu-
tion? To find an answer, let us begin with the case g = 1:

& = a1 + &n, (25)
where o = —by. If |a| < 1, then it is easy to verify that the stationary sequence
§= (fn) with

&= de (26)
j=0

is a solution of (25). (The series on the right-hand side of (26) converges in mean
square.) Let us now show that, in the class of stationary sequences & = (&,) (with
finite second moments), this is the only solution. In fact, we find from (25), by
successive iteration, that

k—1
gn = O‘En—l +éen = a[agn—Q + sn—l] +ep == akgn—k + Zajgn—j-
j=0

Hence it follows that
k—1 2
E {ﬁn - 20/5"—!} =E[of¢, 1) = EE? , =a®E& -0, k— 0.
j=0

Therefore, when || < 1, a stationary solution of (25) exists and is representable as
the one-sided moving average (26).
There is a similar result for every g > 1: if all the zeros of the polynomial

O(z) =1+biz+ -+ by’ (27)

lie outside the unit disk, then the autoregression equation (24) has a unique station-
ary solution, which is representable as a one-sided moving average (Problem 2).
Here the covariance function R(n) can be represented (Problem 3) in the form

T A
R(n) = [ eNMAF()), F(\) = : f(v)av, (28)

where

f) = 5 (29)
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In the special case g = 1, we find easily from (25) that E&, = 0,

n

«
n>0

1
E2— — ' _ and Rn)= —2
60 1— |a|27 an (n) 1— |a|27 =

(when n < 0, we have R(n) = R(—n)). Here

1 1

F) = or [1 — cqe—ir2"
EXAMPLE 6. This example illustrates how autoregression arises in the construction
of probabilistic models in hydrology. Consider a body of water. We try to construct a
probabilistic model of the deviations of the level of the water from its average value
because of variations in the inflow and evaporation from the surface.

If we take a year as the unit of time and let H, denote the water level in year n,
we obtain the following balance equation:

Hn+1 = Hn - KS(HH) + 2n—&-la (30)

where 3,11 is the inflow in year (n+ 1), S(H) is the area of the surface of the water
at level H, and K is the coefficient of evaporation.

Let &, = H, — H be the deviation from the mean level (which is obtained from
observations over many years), and suppose that S(H) = S(H) + ¢(H — H). Then it
follows from the balance equation that &, satisfies

§n+1 = Oé§n + En+1 (31)

with o = 1 — ¢K, g, = X, — KS(H). It is natural to assume that the random
variables ¢, have zero means and, as a first order approximation, are uncorrelated
and identically distributed. Then, as we showed in Example 5, Eq.(31) has (for
|| < 1) a unique stationary solution, which we think of as the steady-state solution
(with respect to time in years) of the oscillations of the level in the body of water.

As an example of practical conclusions that can be drawn from a (theoretical)
model (31), we call attention to the possibility of predicting the level for the follow-
ing year from the results of the observations of the present and preceding years. It
turns out (see also Example 2 in Sect. 6) that (in the mean-square sense) the optimal
linear estimator of &, in terms of the values of ..., &,_1, &, is simply as,.

EXAMPLE 7 (Autoregression and moving average (mixed model)). If we suppose
that the right-hand side of (24) contains ape, + a1€,—1 + -+ + ape,—, instead
of ¢,, we obtain a mixed model with autoregression and moving average of order

(P, 9):
é-n + blgnfl +F bqgnfq =daoep ta1gp—1 +--- + ApEn—p- (32)

Under the same hypotheses as in Example 5 on the zeros of Q(z) (see (27)) it will
be shown later (Corollary 6, Sect. 3) that (32) has a stationary solution £ = (&,) for

which the covariance function is R(n) = [* ™" dF()\) with F()) = fj‘ﬂ fv)av,
where
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1 2

f()\)zﬂ'

P(e™™)
0(e—™)

with P and Q as in (23) and (27).

3. Theorem (Herglotz). Let R(n) be the covariance function of a stationary (wide
sense) random sequence with zero mean. Then there is, on ([—7, ), B(|—m,7))),
a finite measure F = F(B),B € PB(|—m, 7)), such that for every n € Z

R(n) = / M F(dN), (33)
where the integral is understood as the Lebesgue—Stieltjes integral over [—m, ).
PROOF. For N > 1 and A € [—m, 7], set
;X
_ —ikA il
) = 5 ZZR(k — ) em A g, (34)

TN
k=1 I=1

~

Since R(n) is nonnegative definite, fy(\) is nonnegative. Since there are N — |m|
pairs (k, [) for which k — [ = m, we have

1 |m| —im\
) = = (1— ) R(m)em. (35)
2 Ir§<:N N
Let
Fx(B) = [ WV Be B(-mm).
B
Then
™ T —DR~), |n| <N
iAn — in — N ) )
/_ﬂe Fy(d\) /_We () dA {g ) > N (36)

The measures Fy, N > 1, are supported on the interval [—7, 7] and Fy([—7, 7]) =
R(0) < oo for all N > 1. Consequently, the family of measures {Fy}, N > 1,
is tight, and by Prokhorov’s theorem (Theorem 1 of Sect.2, Chap. 3, Vol. 1) there
are a sequence {N;} C {N} and a measure F such that Fy, — F. (The concepts of
tightness, relative compactness, and weak convergence, together with Prokhorov’s
theorem, can be extended in an obvious way from probability measures to any finite
measures.)
It then follows from (36) that

/ M F(d)\) = lim &N Fn,(d)\) = R(n).
o Ny— o0 —

The measure F so constructed is supported on [—, 7r]. Without changing the inte-
gral [ e F(d)), we can redefine F by transferring the “mass™ F({r}), which is
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concentrated at m, to —. The resulting new measure (which we again denote by F)
will be supported on [—7, 7). (Regarding the choice of [—, 7) as the domain of A
see the Remark to Example 1.)

This completes the proof of the theorem.

O

Remark 1. The measure F = F(B) involved in (33) is known as the spectral mea-
sure, and F(X) = F([—m, \]) as the spectral function, of the stationary sequence
with covariance function R(n).

In the preceding Example 2, the spectral measure was discrete (concentrated at
Ak, k=0, £1, ...). In Examples 3-6, the spectral measures were absolutely con-
tinuous.

Remark 2. The spectral measure F' is uniquely defined by the covariance function.
In fact, let F; and F> be two spectral measures, and let

/ ENF(dN) = / eMNFy(dN), ne .

—Tr —Tr

Since every bounded continuous function g(A) can be uniformly approximated on
[—7, ) by trigonometric polynomials, we have

[ svm@ = [ s Faan.
It follows (cf. proof of Theorem 2 in Sect. 12, Chap. 2, Vol. 1) that F1(B) = F3(B)
forall B € #([—m,n)).

Remark 3. If £ = (&,) is a stationary sequence of real random variables &,, then
R(n) = R(—n), and therefore

R(n) = w = /Tr cos An F(d\).

—T
4. PROBLEMS

1. Derive (12) from (11).

2. Prove that the autoregression Eq. (24) has a unique stationary solution repre-
sentable as a one-sided moving average if all the zeros of the polynomial Q(z)
defined by (27) lie outside the unit disk.

3. Show that the spectral functions of sequences (22) and (24) have densities spec-
ified by (23) and (29), respectively.

4. Show thatif Y- _|R(n)|? < oo, then the spectral function F(\) has a density
f()\) given by

1 (o]
)= 5= 3 e MR,
n=—o00
where the series converges in the complex space L? = L2([-m,7),

PB([—m, 7)), A) with X\ the Lebesgue measure.



56 6 Stationary (Wide Sense) Random Sequences: L?-Theory

2. Orthogonal Stochastic Measures and Stochastic Integrals

1. As we observed in Sect. 1, the integral representation of the covariance function
and the example of a stationary sequence

&= ue™" (1)

k=—o00

with pairwise orthogonal random variables z, k € Z, suggest the possibility of rep-
resenting an arbitrary stationary sequence as a corresponding integral generalization

of (1).
If we set
zZN= > )
{k: M <A}
we can rewrite (1) in the form
&= eMAZ(N), 3)
k=—o00

where AZ(M\) =Z(M) — Z(—) = z.

The right-hand side of (3) reminds us of an approximating sum for an integral
[T _€*"dZ(\) of the Riemann-Stieltjes type. However, in the present case, Z()) is
a random function (it also depends on w). And it will be seen that for an integral
representation of a general stationary sequence we need to use functions Z(\) that
do not have bounded variation for each w. Consequently, the simple interpretation
of [ fﬂ ¢™dZ()\) as a Riemann-Stieltjes integral for each w is inapplicable.

2. By analogy with the general ideas of the Lebesgue, Lebesgue-Stieltjes, and
Riemann-Stieltjes integrals (Sect. 6, Chap. 2, Vol. 1), we begin by defining stochas-
tic measure.

Let (€2,.7, P) be a probability space, and let E be a set, with an algebra & of its
subsets and the o-algebra & generated by &, & = o(&p).
Definition 1. A complex-valued function Z(A) = Z(w; A), defined for w € 2 and
A € &), is a finitely additive stochastic measure if
(1) E|Z(A)|* < o for every A € &
(2) For every pair A; and As of disjoint sets in &y,

Z(Al + Az) = Z(A1) + Z(Ag) (P-a.s.). (4)

Definition 2. A finitely additive stochastic measure Z(A) is an elementary stochas-
tic measure if, for all disjoint sets Ay, Ao, ... of & such that A =2 Ay € &,

2
— 0, n— oo. ®))

E ’Z(A) =3 zZ(A)
k=1
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Remark 1. In this definition of an elementary stochastic measure on subsets of &,
it is assumed that its values are in the Hilbert spaceH? = H?*(Q,.7,P), and that
countable additivity is understood in the mean-square sense (5). There are other def-
initions of stochastic measures, without the requirement of the existence of second
moments, where countable additivity is defined (for example) in terms of conver-
gence in probability or with probability 1.

Remark 2. In analogy with nonstochastic measures, one can show that for finitely
additive stochastic measures the condition (5) of countable additivity (in the mean-
square sense) is equivalent to continuity (in the mean-square sense) at “zero”:

E|lZ(A)? =0, A, l@, A, €. 6)

A particularly important class of elementary stochastic measures consists of
those that are orthogonal according to the following definition.

Definition 3. An elementary stochastic measure Z(A), A € &, is orthogonal (or a
measure with orthogonal values) if

EZ(A1)Z(A5) =0 @)
for every pair of disjoint sets A; and Ay in &y, or, equivalently, if
EZ(AZ(As) = E|Z(A1 N AY)|? ®)
for all A; and As in &j.

We write
m(A) =E|Z(A), A€ &. )

For elementary orthogonal stochastic measures, the set function m = m(A), A €
&0, 18, as is easily verified, a finite measure, and, consequently, by Carathéodory’s
theorem (Sect. 3, Chap. 2, Vol. 1), it can be extended to (E, &). The resulting mea-
sure will again be denoted by m = m(A) and called the structure function (of the
elementary orthogonal stochastic measure Z = Z(A), A € &).

The following question now arises naturally: since the set function m = m(A)
defined on (E, &) admits an extension to (E, &), where & = o(&p), can an elemen-
tary orthogonal stochastic measure Z = Z(A), A € &p, be extended to sets A in E
in such a way that E |Z(A)]2 = m(A), A € &7

The answer is affirmative, as follows from the construction given below. This
construction, at the same time, leads to the stochastic integral that we need for the
integral representation of stationary sequences.

3. Let Z = Z(A) be an elementary orthogonal stochastic measure, A € &, with
structure function m = m(A), A € &. For every function

)= fda V), Ace &, (10)
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with only a finite number of different (complex) values, we define the random vari-

able
I(f) =Y _RZ(AY).

Let L2 = L2(E, &, m) be the Hilbert space of complex-valued functions with the
scalar product

. g) = / SN0 m(dN)

and the norm ||f|| = (f, f)'/2, and let H*> = H?(f2,.%,P) be the Hilbert space of
complex-valued random variables with the scalar product

(&) =E&n

and the norm ||£]| = (&, €)'/2.
Then it is clear that, for every pair of functions f and g of the form (10),

(F(f), #(8) = (f; ¢)

and

17 I = Ir1? =/Elf(A)|2m(dA)-

Now letf € L?, and let {f,} be functions of the type (10) such that ||f —f,| — 0,
n — oo (Problem 2). Consequently,

17 () = )| = W = faull = O, 1y m — o0

Therefore the sequence {.#(f,)} is fundamental in the mean-square sense and, by
Theorem 7 in Sect. 10, Chap. 2, Vol. 1, there is a random variable (denoted by .7 (f))
such that .# (f) € H? and |7 (f,) — Z(f)|| = 0, n — oo.

The random variable .#(f) constructed in this way is uniquely defined (up to
stochastic equivalence) and is independent of the choice of the approximating se-
quence {f, }. We call it the stochastic integral of f € L? with respect to the elemen-
tary orthogonal stochastic measure Z and denote it by

S(f) = / £V Z(dN).

We note the following basic properties of the stochastic integral .7 (f); these are
direct consequences of its construction. Let g, f, and f, € L?. Then

(), 7(g) = (f &) an
7O = £l (12)
F(af +bg) =af(f)+bI(g) (P-as.) (13)
where a and b are constants;
-7 () = FF) —0 (14)

if |If, = f]l = 0,n — oo.
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4. Let us use the preceding definition of the stochastic integral to extend the elemen-
tary stochastic measure Z(A), A € &, to sets in & = 0(&)).

Since measure m is assumed to be finite, we have In = In()\) € L? for all
A € & Write Z(A) = F(Ia). Itis clear that Z(A) = Z(A) for A € &. It follows
from (13) that if Ay N Ay = & for Ay and Ay € &, then

Z(A1 + Ag) = Z(Al) + Z(Ag) (P-a.s.)
and it follows from (12) that
E \Z(A)|2 =m(A), Aeé.

Let us show that the random set function Z (A), A € &, is countably additive in
the mean-square sense. In fact, let A, € & and A = Z,fil Ay. Then

~ S 2A) = I en),
k=1

where -
gn( ZIAk —Iz; )\) 2,1: Z Ak.
k=n+1
But
ElZ(gn)* = llgall> = m(E,) L 0, n— oo,
ie.,

E|z(A ZZ A n — 0.

It also follows from (11) that
EZ(A)Z(As) =

when A1 N Ay = g, Al,AQ €&

Thus, our function Z (A), defined on A € &, is countably additive in the mean-
square sense and coincides with Z(A) on the sets A € &. We shall call Z(A),
A € &, an orthogonal stochastic measure (since it is an extension of the elementary
orthogonal stochastic measure Z(A)) with respect to the structure function m(A),
A € &; and we call the integral .7 (f) = [,.f(\) Z(d\), defined earlier, a stochastic
integral with respect to this measure.

5. We now consider the case (E, &) = (R, #(R)), which is the most important for
our purposes. As we know (Theorem 1, Sect. 3, Chap. 2, Vol. 1), there is a one-to-one
correspondence between finite measures m = m(A) on (R, Z(R)) and (generalized)
distribution functions G = G(x), with m(a, b] = G(b) — G(a).

It turns out that there is something similar for orthogonal stochastic measures.
We introduce the following definition.



60 6 Stationary (Wide Sense) Random Sequences: L?-Theory

Definition 4. A set of (complex-valued) random variables {Z)}, A € R, defined on
(Q, %, P), is a random process with orthogonal increments if

(1) E|Z)\]? < 0, A\ €R;
(2) For every A € R

E|Zy -2, =0, MIA M ER;
(3) Whenever A1 < Ay < A3 < Ay,
E(Zx, —2x,)(Zx, —2Zy,) = 0.

Condition (3) is the condition of orthogonal increments. Condition (1) means that
Zx € H?. Finally, condition (2) is included for technical reasons; it is a requirement
of continuity on the right (in the mean-square sense) at each A € R.

Let Z = Z(A) be an orthogonal stochastic measure with respect to the struc-
ture function m = m(A), which is a finite measure with (generalized) distribution
function G(\). Let us set

Z A = Z (—OO, /\}

Then
E \Z,\|2 =m(—o00,\] = G(\) <0, E|Z)-— Z,\”|2 =mAAN] L0, A LA

and (evidently) (3) is also satisfied. Thus, {Z,} is a process with orthogonal incre-
ments.

On the other hand, let G()\) be a generalized distribution function, G(—oc) = 0,
G(+00) < oo, and let {Z,} be a process with orthogonal increments such that
E|Z\|? = G()). Set

Z(A) = Z, — Z,

when A = (a,b]. Let & be the algebra generated by the sets A = > (ax, by
with disjoint (a, by] and

Z(A) = iZ(ak, bk]
k=1

It is clear that
E[Z(A)]? = m(A),

where m(A) = Y/, [G(b) — G(ax)] and
EZ(ANZ(A) = 0

for disjoint intervals Ay = (a1,b1] and Ay = (ag, bs].

Due to continuity on the right of G()), A € R, this implies that Z = Z(A), A €
&9, 1 an elementary stochastic measure with orthogonal values. The set function
m = m(A),A € &, has a unique extension to a measure on & = Z(R), and
it follows from the preceding constructions that Z = Z(A), A € &, can also be
extended to the sets A € &, where & = #(R), and E|Z(A)|? = m(A), A € B(Z).
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Therefore there is a one-to-one correspondence between processes {Z)}, A € R,
with orthogonal increments and E |Z)|? = G(\), G(—o0) = 0, G(+00) < 00, and
orthogonal stochastic measures Z = Z(A), A € Z(R), with structure functions
m = m(A). The correspondence is given by

Zy =Z(—00,\], G(\) =m(—o0, ]

and
Z(a,b] = Zp — Z,, m(a,b] = G(b) — G(a).

By analogy with the usual notation of the theory of Lebesgue—Stieltjes and
Riemann-Stieltjes integration (Subsections 9 and 11 of Sect. 6, Chap.2, Vol. 1),
the stochastic integral [, f()) dZy, where {Zy} is a process with orthogonal incre-
ments, means the stochastic integral [, f(\) Z(d)) with respect to the orthogonal
stochastic measure corresponding to {Z)}.

6. PROBLEMS

1. Prove the equivalence of (5) and (6).

2. Letf € L2, Using the results of Chap. 2, Vol. 1 (Theorem 1 in Sect. 4, the Corol-
lary to Theorem 3 of Sect. 6, and Problem 8 of Sect. 3), prove that there is a
sequence of functions f, of the form (10) such that ||f — /|| — 0, n — oo.

3. Establish the following properties of an orthogonal stochastic measure Z(A)
with structure function m(A):

E |Z(A1) — Z(A2)|2 = m(AlAAg),
Z(Al \Ag) = Z(Al) — Z(Al N AQ) (P—a.s.),
Z(AlAAg) = Z(A1) + Z(Ag) — 2Z(A1 N AQ) (P-a.s.).

3. Spectral Representation of Stationary (Wide Sense)
Sequences

1. If £ = (&,) is a stationary sequence with E£, = 0, n € Z, then, by the theorem
of Sect. 1, there is a finite measure F = F(A) on ([—m, ), B([—m,m))) such that
the covariance function R(n) = Cov (&4, §) admits the spectral representation

R(n) = / i e F(dN). (1)

The following result provides the corresponding spectral representation of the
sequence & = (&,), n € Z, itself.

Theorem 1. There is an orthogonal stochastic measure Z = Z(A), A €
PB(|—n,m)), such that for every n € Z (P-a.s.)

gn: T iAnZd)\ (: iAnZd)\). (2)
/ (dN) /[) (@)

Moreover, EZ(A) = 0,E|Z(A)]2 = F(A).
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PROOF. The simplest proof is based on properties of Hilbert spaces.
Let L?(F) = L?(E, &, F) be a Hilbert space of complex functions, E = [, 7),
& = B([—m, 7)), with the scalar product

6.9 = [ r0R0) (@), ®

and let L2(F) be the linear manifold (L3(F) C L?(F)) spanned by the functions
en = ey(\), n € Z, where e, ()\) = ™.
Observe that since E = [—, ) and F is finite, the closure of LZ(F) coincides
(Problem 1) with L*(F):
L2(F) = L*(F).

Also, let Lg (€) be the linear manifold spanned by the random variables &,, n € Z,
and let L*(€) be its closure in the mean-square sense (with respect to P).

We establish a one-to-one correspondence between the elements of L (F) and
LZ(€), denoted by “<+,” by setting

en > &, nel, “4)

and defining it for elements in general (more precisely, for equivalence classes of

elements) by linearity:
D e Y ks (5)

(here we suppose that only finitely many of the complex numbers «,, are different
from zero).

Observe that (5) is a consistent definition, in the sense that Ya,e, = 0 almost
everywhere with respect to F if and only if > &, = 0 (P-a.s.).

The correspondence “<” is an isometry, i.e., it preserves scalar products. In fact,
by (3),

(en, €m) = /_ ! en(New(N) F(d)) = /_ " A F(d)\)

— R(n — m) = Ef,,&m = (fm gm)

and similarly,

<Zanen» Zﬁnen> = (Zanﬁm Zﬁnén). (6)

Now let n € L?(). Since L?(£) = LZ(€), there is a sequence {n,} such that
n. € L3(€) and ||y, — n|| — 0, n — oco. Consequently, {7,} is a fundamental
sequence, and therefore so is the sequence {f,}, where f, € L3(F) and f, <> 7,.
The space L*(F) is complete, and consequently there is an f € L?(F) such that
If, — 1l 0.

There is an evident converse: if f € L?(F) and ||f — f,|| — 0, f, € L3(F), there
is an element 7 of L?(€) such that || — n,|| — 0, 1, € LE(€), and 1, <> f,.
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Up to now, the isometry “<+” has been defined only as between elements of L3 (€)
and LZ(F). We extend it by continuity, taking f <> 1 when f and 7 are the elements
considered earlier. It is easily verified that the correspondence obtained in this way
is one-to-one (between classes of equivalent random variables and of functions), is
linear, and preserves scalar products.

Consider the function f(A) = Ia(A), where A € B([—7, 7)), A € [-m,7),
and let Z(A) be the element of L?(¢) such that Ia()\) > Z(A). It is clear that
lIa(N)||? = F(A), and therefore E |Z(A)|?> = F(A). Since E¢, = 0, n € Z, we
have for every element of L2(€) (and hence of L?(£)) that it has zero expectation. In
particular, E Z(A) = 0. Moreover, if Ay N Ay = &, we have EZ(A1)Z(A3) =0
and E|Z(A) = Y77, Z(Ak)’2 — 0, n — oo, where A = >~° | Ay

Hence the family of elements Z(A), A € %B([—m, «)), form an orthogonal
stochastic measure, with respect to which (according to Sect.2) we can define the
stochastic integral

g6 = [ fNzan), fer2F).

—T

Let f € L*(F) and n « f. Denote the element 7 by ®(f) (more precisely, se-
lect single representatives from the corresponding equivalence classes of random
variables or functions). Let us show that (P-a.s.)

I (f) = 2(f). @)

In fact, if

) =Y ada, (V) )

is a finite linear combination of functions I, (A), Ay = (ax, by, then, by the very
definition of the stochastic integral, .# (f) = > axZ(Ay), which is evidently equal
to ®(f). Therefore (7) is valid for functions of the form (8). But if f € L*(F) and
I, —fIl = 0, where f, are functions of the form (8), then || ®(f,,) — ®(f)|| — 0 and
.2 () — Z(F)|| — 0 (by (14) of Sect. 2). Therefore ®(f) = Z(f) (P-a.s.).

Consider the function f(\) = €. Then ®(e*") = &, by (4), but on the other
hand, .7 (¢*") = [7_ e Z(d\). Therefore

& :/ eMzZ(d\), neZ (P-as.)
by (7). This completes the proof of the theorem.
O

Corollary 1. Let £ = (&,) be a stationary sequence of real random variables &,,
n € Z. Then the stochastic measure Z = Z(A) involved in the spectral representa-
tion (2) has the property that

Z(A) = Z(-A) )

Sforevery A = B(|—m, 7)), where —A = {\: — X € A}
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In fact, let f(\) = Y aze™ and n = > u& (finite sums). Then f <+ 7, and

therefore A
M= b < Y e =f(=N). (10)

Since In(\) < Z(A), it follows from (10) that Ia(—\) <> Z(A) (or, equivalently,
I_A(M\) < Z(A)). On the other hand, I_A(\) < Z(—A). Therefore Z(A) =
Z(—A) (P-as.).

Corollary 2. Again let £ = (&,) be a stationary sequence of real random variables
&nand Z(A) = Z1(A) + iZo(A). Then

EZi(A1)Z2(A2) =0 (1D

forevery A1 and Ay in B([—7, 7)), and if Ay N A = S and (—A1) N Ag =
then
EZi(A)Z1(A) =0, EZy(A))Za(As) = 0. (12)

In fact, since Z(A) = Z(—A), we have
Z(-A) = Z1(A), Zo(~A) = ~Zy(A). (13

Moreover, since EZ(A1)Z(Az) = E|Z(A1NAL) %, we have InE Z(A1)Z(Az) =
0, i.e.,
EZi(A1)Z2(Ag) — EZy(A1)Z1(As) = 0. (14)

If we take the interval —A; instead of A, we therefore obtain
EZi(—A1)Z2(As) —EZo(—A1)Z1(A2) =0
which, by (13), can be transformed into
EZi(A1)Z2(A2) + EZy(A1)Z1(Ag) = 0. (15)

Then (11) follows from (14) and (15).

When A; N Ay = & and (—A1) N Ay = &, we have EZ(A1)Z(As) = 0,
whence ReEZ(A1)Z(Az) = 0 and ReEZ(—A1)Z(Az) = 0, which, with (13),
provides an evident proof of (12).

Corollary 3. Let £ = (&,) be a Gaussian sequence. Then, for any Ay, . .., Ay, the
vector (Z1(A1), ..., Z1(Ar), Zo (A1), . .., Z2(Ay)) is normally distributed.

In fact, the linear manifold L2 (¢) consists of (complex-valued) Gaussian random
variables 7, i.e., the vector (Ren, Im ) has a Gaussian distribution. Then, accord-
ing to Subsection 5 of Sect. 13, Chap. 2, Vol. 1, the closure of L3(£) also consists of
Gaussian variables. It follows from Corollary 2 that, when £ = (&,) is a Gaussian
sequence, the real and imaginary parts of Z; and Z, are independent in the sense that
the families of random variables (Z1 (A1), ..., Z1(Ax)) and (Z2(A1), ..., Z2(Ag))
are independent. It also follows from (12) that if A; N A; = (=A) NA; = @,
i,j =1,...,k, i # j, the random variables Z;(A1), ..., Z;(A;) are mutually inde-
pendent, i = 1, 2.
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Corollary 4. If ¢ = (&,) is a stationary sequence of real random variables, then
(P-a.s.)
s s
& :/ cos \nZi(d)) —/ sin \nZs(d)). (16)

—T —T

Remark. If {Z,}, A € [, 7), is a process with orthogonal increments, corre-
sponding to an orthogonal stochastic measure Z = Z(A), then, in accordance with
Sect. 2, the spectral representation (2) can also be written in the following form:

& :/ eMdZy, ner. (17)

2. Let £ = (&,) be a stationary sequence with the spectral representation (2), and let
n € L?(£). The following theorem describes the structure of such random variables.

Theorem 2. If ) € L?(€), then there is a function ¢ € L*(F) such that (P-a.s.)

1= ezian. (18)
PrROOE. If
=Y ok, (19)
k| <n
then, by (2),
N = / ( > akei)‘k> Z(d)), (20)
- |k|<n
i.e., (18) is satisfied by
Pa(N) = Y ane™. 1)
k| <n

In the general case, where 1 € L?(€), there are variables 7, of type (19) such that
ln —ml| — 0, n — oco. But then ||, — @l = |70 — Ml — 0, n,m — oo.
Consequently, {(,} is fundamental in L?(F), and therefore there is a function ¢ €
L?%(F) such that || — ¢,|| — 0, n — oo.

By property (14) of Sect.2, we have |7 (¢,) — Z(p)|| — 0, and since 7, =
F (¢n), we also have n = 7 (p) (P-a.s.).

This completes the proof of the theorem.

O

Remark. Let Hy(§) and Hy(F) be the respective closed linear manifolds spanned
by the variables £ = (&,).<0 and by the functions ¢ = (e,),<o. Then, if n €
Hy(€), there is a function ¢ € Ho(F) such that (P-a.s)n= [ _o()) Z(d\).

3. Formula (18) describes the structure of the random variables that are obtained
from &,, n € Z, by linear transformations, i.e., in the form of finite sums (19) and
their mean-square limits.
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A special but important class of such linear transformations is defined by means
of what are known as (linear) filfers. Let us suppose that, at instant m, a system
(filter) receives as input a signal x,,, and that the output of the system is, at instant 7,
the signal h(n — m)x,,, where h = h(s), s € Z, is a complex-valued function called
the impulse response (of the filter).

Therefore the total signal obtained at the output can be represented in the form

Yn = Z h(n — m)x,,. (22)

m=—0o0

For physically realizable systems, the values of the input at instant n are deter-
mined only by the “past” values of the signal, i.e., the values x,, for m < n. It is
therefore natural to call a filter with the impulse response h(s) physically realizable
if h(s) = 0 for all s < 0, in other words if

Vo = i h(n —m)x,, = i_o%h(m)xn_m. (23)

An important spectral characteristic of a filter with the impulse response 4 is its
Fourier transform

p(N) = Y e h(m), (24)

known as the frequency characteristic or transfer function of the filter.

Let us now take up conditions, about which nothing has been said so far, for
the convergence of the series in (22) and (24). Let us suppose that the input is a
stationary random sequence £ = (§,), n € Z, with covariance function R(n) and
spectral decomposition (2). Then, if

i h(k)R(k — [)h(l) < oo, (25)

k,=—00

the series > - h(n — m)&,, converges in mean square, and therefore there is a

m=—0o0

stationary sequence 77 = (7),) with

oo oo

M= Y hn—my= > h(m)& (26)

In terms of the spectral measure, (25) is evidently equivalent to saying that () €
L*(F),i.e.,
/ (V[2 F(dA) < oo. @7)

—T

Under (25) or (27), we obtain the spectral representation

= / "M Z(@N), nez, (28)

—T
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of n from (26) and (2). Consequently, the covariance function R, (n) of 7 is given
by the formula
Ry (n) = / (V) F(dN). (29)

In particular, if the input to a filter with frequency characteristic ¢ = () is taken to
be white noise € = (g,), the output will be a stationary sequence (moving average)

T = Z h(m)gnfm (30)

m=-—o0

with spectral density
1
= —|p\).
1) = 5=l

The following theorem shows that, in a certain sense, every stationary sequence
with a spectral density is obtainable by means of a moving average.

Theorem 3. Let ) = (1),) be a stationary sequence with spectral density f,,(\). Then
(possibly at the expense of enlarging the original probability space) we can find a
sequence € = (&,) representing white noise, and a filter, such that the representation
(30) holds.

PROOF. For a given (nonnegative) function f;,(A) we can find a function ¢ () such
that f;,(A) = (1/27)|¢(N)|%. Since ["_f,(A)dX < oo, we have ¢(\) € L?(dp),
where dy is the Lebesgue measure on [—, 7). Hence ¢ can be represented as a
Fourier series (24) with h(m) = (1/27) [T e™*p(X)dA, where convergence is
understood in the sense that

.

2
d\— 0, n— .

p(A) = D e "h(m)

jm|<n

Let -
i :/ eMZ(dN), nel.
Besides the measure~Z = Z (A), we intrgduce another, independent of Z, orthogonal
stochastic measure Z = Z(A) with E |Z(a, b]|? = (b — a)/27. (The possibility of
constructing such a measure depends, in general, on having a sufficiently “rich”
original probability space.) Let us set

Z(A) = /A $2(N) Z(dN) + /A [1— o®(N)p(N)] Z(dN),

where
o Ja ', ifa#0,
70, ifa=0.
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The stochastic measure Z = Z(A) is a measure with orthogonal values, and for
every A = (a, b], we have

A
E[Z(A /w MPle(A |2dA+f/|1— NP ar= 21
2w

where |A| = b — a. Therefore the stationary sequence € = (¢,), n € Z, with

an:/ M Z(dN),

is a white noise.
‘We now observe that

/ ! eNMp(N) Z(dN) = / ey Z(d\) =, (31

and, on the other hand, by definition of ¢ (\) and property (14) in Sect. 2, we have
(P-a.s.)

/ " M () Z(dN) = / ( Z =N h(m )Z(a’/\)

-n m=—oo

Z h(m /W A=) Z(d)\) = Z h(m)ep—m,

m=—o0 m=—0o0

which, together with (31), establishes representation (30).
This completes the proof of the theorem.
O

Remark. If £, (\) > 0 (almost everywhere with respect to Lebesgue measure), the
introduction of the auxiliary measure Z = Z(A) becomes unnecessary (since then
1—¢®(\)p(N) = 0 almost everywhere with respect to Lebesgue measure), and the
reservation concerning the necessity of extending the original probability space can
be omitted.

Corollary 5. Let the spectral density f;,(A) > 0 (almost everywhere with respect to
Lebesgue measure) and

where

M

e(A)

D), S )P
k=0

Then the sequence 1 admits a representation as a one-sided moving average,

= i h(m)e,_p.
m=0
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In particular, let P(z) = ap +a1z+ - - - + a,2’. Then the sequence 1 = (n,) with
spectral density

1 .
)\ — P —iA\|2
£ = P
can be represented in the form

M = Ao€p +a16p—1 + -+ + apEn—p-

Corollary 6. Let £ = (&,) be a stationary sequence with rational spectral density

2

! . (32)

T o

P(e_i)‘)
Q(e™™)
where P(z) = ag + a1z + -+ apz’, Q(z2) =1+ biz+ - + byzi.

If O(z) has no zeros on {z: |z| = 1}, there is a white noise € = ¢(n) such that
(P-a.s.)

fe(N)

gn + blfnfl +F bqfnfq =aoep targp—1 + - + apEn—p- (33)

Conversely, every stationary sequence & = (&,) that satisfies this equation with
some white noise € = (e,) and some polynomial Q(z) with no zeros on {z: |z] = 1}
has a spectral density (32).

In faCt, let Th = gn + blgnfl + -+ bqgn*Q' Thenfn(A) = (1/27T)|P(eii/\)‘2’
and the required representation follows from Corollary 5.

On the other hand, if (33) holds and F¢(\) and F,)(\) are the spectral functions
of £ and 7, then

A A
RO = [ 1ol PR =5 [ e P o

Since |Q(e™")|? > 0, it follows that F¢(\) has a density defined by (32).

4. The following mean-square ergodic theorem can be thought of as an analog of
the law of large numbers for stationary (wide sense) random sequences.

Theorem 4. Let £ = (&,), n € Z, be a stationary sequence with E &, = 0, covari-
ance function (1), and spectral representation (2). Then

IS e Sz (34)
k=0
and 1
~ SR = F({0). 65)
k=0

PROOF. By (2),

iigk:/ﬂ %X_:e’w‘Z(d}\) :/W on(N) Z(dN),

k=0 T k=0 -
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where

n—1

1 , 1 A=0

oa(N) = = Ze’k)‘ - { o ’ (36)
nk:o %e’*—ll’ )\7&0

It is clear that |p,(A)| < 1.
2
Moreover, ¢, () L—(F)> I{03(\), and therefore, by (14) of Sect. 2,

/ TN z@N S [ 1)z = z({oy),

—T —T

which establishes (34).
Relation (35) can be proved in a similar way.
This completes the proof of the theorem.
O

Corollary. If the spectral function is continuous at zero, i.e., F({0}) = 0, then
Z({0}) = 0 (P-a.s.) and by (34) and (35),

n—1

1 ln—l 2
- R(k 0= - —0.
nz (k) — ”kz:;fk

k=0

1 n—1 2

. > R(k) ( ka) €o
k=0 k=0

the converse implication also holds:

1 n—1 12 1 n—1
HZg,(—>0:> ;ZR([{) -0
k=0 k=0

Since
2

< E |€0

)

Therefore the condition (1/n) Z_é R(k) — 01s necessary and sufficient for the

convergence (in the mean-square sense) of the arithmetic means (1/n) Zk o0& to
zero. It follows that if the original sequence £ = (&,) has expectation m (that is,
E & = m), then

1rzfl 1nfl 12
- R(k 0& - - 37
n; (k) — @nk;&( m, (37

where R(n) = E(&, — Efn)(fo E &o).
Let us also observe that if Z({0}) # 0 with a positive probability and m = 0,
then &, “contains a random constant o’

gn:a+77na
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where a = Z({0}) and the measure Z, = Z,(A) in the spectral representation
m = [7_ e Z,(d)) is such that Z, ({0}) = 0 (P-a.s.). Conclusion (34) means that
the arithmetic mean converges in mean square to precisely this random constant c.

5. PROBLEMS

1. Show that L2(F) = L?(F) (for the notation see the proof of Theorem 1).

2. Let £ = (&,) be a stationary sequence with the property that &,y = &, for some
N and all n. Show that the spectral representation of such a sequence reduces to
(13) of Sect. 1.

3. Let £ = (&,) be a stationary sequence such that E &, = 0 and

1 N—1N-1 1 |k
WZZR(k—l) =5 > R(k) [1— N} < CN~©
k=0 =0 || <N—1

for some C > 0, a > 0. Use the Borel-Cantelli lemma to show that then
1
v Y & =0 (Pas.).
k=0

4. Let the spectral density f¢ () of the sequence { = (&,) be rational,

_ L [Paa(e™)]
K= 5 T

where P,_1(z) = ap+a1z+ - +a,_12" L and Q,(z) = 1 + b1z + -+ - + b,7",
and no zeros of 0,(z) lie on the unit circle.

Show that there is a white noise € = (g,,), m € Z, such that the sequence
(€¢,) is a component of an n-dimensional sequence (£1, €2, ..., &%), &L = &,,
satisfying the system of equations

(38)

i i+1 .
1l1z+1 :§£n+ +6i5m+17 L= 1, ey I’l*l,
n—1
— j+1
et = = D bt 4 Bugm, (39)
Jj=0

i1
where 81 = ag, 8 = ai—1 — Y _y_; Bibi—«.

4. Statistical Estimation of Covariance Function
and Spectral Density

1. Problems of the statistical estimation of various characteristics of the probability
distributions of random sequences arise in the most diverse branches of science (e.g.,
geophysics, medicine, economics). The material presented in this section will give
the reader an idea of the concepts and methods of estimation and of the difficulties
that are encountered.
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To begin with, let £ = (§,), n € Z, be a sequence, stationary in the wide

sense (for simplicity, real) with expectation E{, = m and covariance R(n) =
ffﬁ e F(dN).

Suppose we have the results xqg, x1, ..., xy—1 of observing the random variables
£o0,&1,--.,&v—1. How are we then to construct a “good” estimator of the (unknown)
mean value m?

Let us set

e
my(x) = N gxk. (D

Then it follows from the elementary properties of the expectation that this is a
“good” estimator of m in the sense that “in the average over all possible realiza-
tions of data xg, ...,xy_1" it is unbiased, i.e.,

=,
Emy(¢) =E (N ;51«) =m. 2

In addition, it follows from Theorem 4 of Sect. 3 that when (1/N) ZQ’:O R(k) — 0,
N — oo, our estimator is consistent (in mean square), i.e.,

E|my(&) —m|> =0, N — oo. (3)

Next we take up the problem of estimating the covariance function R(n), the
spectral function F(\) = F([—m, )\]), and the spectral density f()\), all under the
assumption that m = 0.

Since R(n) = E &,44&, it is natural to estimate this function on the basis of N

observations xg, X1, . ..,xy—1 (When 0 < n < N) by
1 N—n—1
k nx) = X, X .
N( ’ ) N —n ; n+kNk

It is clear that this estimator is unbiased in the sense that
ERyv(n;€) =R(n), 0<n<N.

Let us now consider the question of its consistency. If we replace & in (37) of
Sect. 3 by ¢ = &,4++& and suppose that for each integer n the sequence ¢ = ((i)rez
is wide-sense stationary (which implies, in particular, that E fé < 00), we find that
the condition

1 N—-1

v > Elbniic — R(n)][6ao — R(n)] =0, N — o0, (4)
k=0
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is necessary and sufficient for
E|Rv(n;€) —R(n)]> -0, N — oo. ®)

Let us suppose that the original sequence £ = (¢,) is Gaussian (with zero mean
and covariance R(n)). Then, proceeding analogously to (51) of Sect. 12, Chap. 2,
Vol. 1, we obtain

E[én 4 — R(n)][€x60 — R(n)] = E &y i&ibuo — R*(n)
= E &k - E&ubo + E&ii&n - E&i&o
+ E&uido - E&E — R (n)
= R*(k) + R(n + k)R(n — k).

Therefore, in the Gaussian case, condition (4) is equivalent to

NZ (n+k)R(n—k)] -0, N — oco. (6)
k=0

Since |R(n + k)R(n — k)| < |[R(n+ k)|* + |R(n — k)|?, the condition

%ZRQ(I()—W, N — oo, (7
=0

implies (6). Conversely, if (6) holds for n = 0, then (7) is satisfied.
We have now established the following theorem.

Theorem. Let & = (§,) be a Gaussian stationary sequence with E&, = 0 and co-
variance function R(n). Then (7) is a necessary and sufficient condition that, for
every n > 0, the estimator Ry(n; x) is mean-square consistent (i.e., that (5) is satis-

fied).

Remark. If we use the spectral representation of the covariance function, we obtain

1= T
L0 / / Z O F(ANF(dv)
k=0 -
_ / " RO w) PN F),
where (cf. (36) of Sect. 3)

1, A=v,
fN()\7V) = =N
Wiseno] AV
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Butas N — oo,
1, A=y,
o s ={g 350

Therefore

%i:R%k) - ™ Wf()\,V)F(d)\)F(dz/)
k=0

/ RN Fa) =3P (O,

where the sum over A contains at most a countable number of terms since the mea-
sure F is finite.
Hence (7) is equivalent to

> F({A) =0, ®)
A

which means that the spectral function F(\) = F([—m7, \]) is continuous.

2. We now turn to the problem of finding estimators for the spectral function F())
and the spectral density f(\) (under the assumption that they exist).

A method that naturally suggests itself for estimating the spectral density follows
from the proof of Herglotz’s theorem that we gave earlier. Recall that the function

1 |I’l‘ —iAn
A =5->7 (1 - N)R(n)e ©)
|n|<N
introduced in Sect. 1 has the property that the function
A
FN()\) = fN(V) dv

—T

converges on the whole to the spectral function F(\). Therefore, if F(\) has a den-
sity (), then we have

A A

fn(v)dv — f(w)dv (10)

—T —T

foreach A € [—m, ).
Starting from these facts and recalling that an estimator for R(n) (on the basis of

the observations xg, x1,...,xy_1) is Ry(n; x), we take as an estimator for f(\) the
function ]

7 1 n 75 —i\n

Fvxix) = o |2<3N (1 - N)RN(n;x>e , (11

setting Ry (n; x) = Ry(|n|; x) for |n| < N.
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The function fN(A; x) is known as a periodogram. 1t is easily verified that it can
also be represented in the following more convenient form:

N-1 2
1 .
N E Xne in
n=0

Since E Ry (n;€) = R(n), |n| < N, we have

Efv(A;€) = fu(N).

If the spectral function F()) has density f(\), then, since fy () can also be written
in the form (34) of Sect. 1, we find that

O ﬁ z_:z/ =D AR £ gy

v(Xsx) = (12)

T 1 ) 2
_ i(v—X\)k dv.
|z T rwar
The function )
N— 2 < A2
By(A) = L Ze»‘k _ L sin §N
2TN | = 27N |sin A/2

is the Fejér kernel. It is known, from the properties of this function, that for almost
every A (with respect to Lebesgue measure)

| o=y av 5. (13)

Therefore, for almost every A € [—m, 7),
Efv(X:€) = f(V); (14)
in other words, the estimator fy()\;x) of f(\) on the basis of xo,x1,...,xy_1 is

asymptotically unbiased.

In this sense, the estimator fN(/\;x) could be considered “good.” However, at
the individual observed values xg, . .. ,xy_1 the values of the periodogram fN()\; X)
usually turn out to be far from the actual values f()). In fact, let £ = (&,) be a sta-
tionary sequence of independent Gaussian random variables, &, ~ .4#7(0,1). Then

f(A) =1/27 and
ZS e*l}\k

Therefore for A = 0 we have that 27rfN (0, &) coincides in distribution with the square
of the Gaussian random variable ) ~ .47(0, 1). Hence, for every N,

(X €) =
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N 1
Elfv(0;6) —f(0) = o) Eln* —1]* > 0.
Moreover, an easy calculation shows that if f(\) is the spectral density of a station-
ary sequence & = (&,) that is constructed as a moving average:

&= i (15)
k=0

with "7 |ax] < 00, Yoo, lax|? < oo, where € = (g,) is white noise with Ef <
00, then

~ 2 =
Jim E s —sop = { A4 350 (1o

Hence it is clear that the periodogram cannot be a satisfactory estimator of the
spectral density. To improve the situation, one often uses an estimator for f(\) of
the form . A

W nx) = Wy(A = v)fn(v;x) d, (17)
which is obtained from the periodogram fN()\; x) by means of a smoothing function
Wy (), which we call a spectral window. Natural requirements on Wy(\) are as
follows:

(a) Wy()) has a sharp maximum at A = 0;
®) [T Wy(\)dr=1;
©) P (NE) —fN))? =0, N—oo, A€ [—m, 7).

By (14) and (b), the estimators fAV,V (A; &) are asymptotically unbiased. Condition (c)
is the condition of consistency in mean square, which, as we showed above, is vio-
lated for the periodogram. Finally, condition (a) ensures that the required frequency
A is “picked out” from the periodogram.

Let us give some examples of estimators of the form (17).

Bartlett’s estimator is based on the spectral window

WN(A) = aNB(aN)\),

where ay 1 0o, ay/N — 0, N — oo, and

1 2

sin(\/2)

/2

FParzen’s estimator uses the spectral window
WN(/\) = aNP(aN)\),
where ay are the same as before and

PO) = 2

sin(\/4) ‘4
8

A4
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Zhurbenko’s estimator is constructed from a spectral window of the form
WN(/\) = aNZ(aN/\)
with o
+1 atl
Z()\) —J 2« |>\‘a+ 20’ ‘)‘| <1,
0, A > 1,
where 0 < o < 2 and the ay are selected in a particular way.
We shall not spend any more time on problems of estimating spectral densities;
we merely note that there is an extensive statistical literature dealing with the con-

struction of spectral windows and the comparison of the corresponding estimators
V(A x). (See, e.g., [36, 37, 38].)

3. We now consider the problem of estimating the spectral function F(\) =
F([—m, A\]). We begin by defining

A A
Fy(N) = | fv@)dv, Fy(\x) = [ fv(vix)dy,

—T

where fN(l/; x) is the periodogram constructed with (xg,x1,...,Xyv—1).
It follows from the proof of Herglotz’s theorem (Sect. 1) that

/ eMdFy () — eMdF(N)

—T —T

for every n € 7Z. Hence it follows (cf. corollary to Theorem 1 of Sect. 3, Chap. 3,
Vol. 1) that Fy = F, i.e., Fy(\) converges to F()\) at each point of continuity of
F(A).
Observe that . il
A . n

/ M dEy(X;€) = RN(";S)( - N)
for all [n| < N. Therefore, if we suppose that Ry(n; &) converges to R(n) with
probability 1 (or in mean square) as N — 0o, we have

/ i ENMAFN (X €) — i e dF(\)  (P-as.)

—T —T

and therefore Fiy(\; €) = F()\) (P-a.s.) (or in mean square).
It is then easy to deduce (if necessary, passing from a sequence to a subsequence)
that if Ry(n; §) — R(n) in probability, then Fy(\; §) = F()) in probability.

4. PROBLEMS

1. In (15) let e, ~ 47(0,1). Show that

T

(N — |n[) Var Ry(n, &) —>27T/ (14 ™) £2(\) dA

—T

for every n, as N — oo.
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2. Establish (16) and the following generalization:

2f2(0), A=v=0, &7,
lim Cov(fy(X; &), /v(v:€)) =  f2(N),  A=v#0, +r,
N0 0, \ £ .

5. Wold’s Expansion

1. In contrast to representation (2) of Sect. 3, which gives an expansion of a sta-
tionary sequence in the frequency domain, Wold’s expansion operates in the time
domain. The main point of this expansion is that a stationary sequence £ = (&),
n € Z, can be represented as the sum of two stationary sequences, one of which is
completely predictable (in the sense that its values are completely determined by its
“past”), whereas the second does not have this property.

We begin with some notation. Let H,(§) = L?(&") and H() = L3?(§) be
closed linear manifolds, spanned respectively by &* = (...,&,-1,&,) and £ =

(. .. ,Sn_l,gn, .. ) Let

For every n € H(£), denote by

fin(n) = E(n | Ha(€))

the projection of 7 on the subspace H, (&) (Sect. 11, Chap. 2, Vol. 1). We also write

#_oe(n) = E(n|S(€)).

Every element 7 € H(&) can be represented as
N =fco(n) + (1= 7—o(n)),

where ) — T_oo(n) L 7—_oo(n). Therefore H(&) is represented as the orthogonal
sum

H(£) = S(§) @ R(E),

where S(€) consists of the elements 7_, (1) with n € H(), and R(&) consists of
the elements of the form 1 — 7_ (7).

We shall now assume that E &, = 0 and Var &, > 0. Then H(&) is automatically
nontrivial (contains elements different from zero).

Definition 1. A stationary sequence £ = (&,) is regular if

and singular if
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Remark 1. Singular sequences are also called deterministic and regular sequences
are called purely or completely nondeterministic. If S(§) is a proper subspace of
H(&), we just say that £ is nondeterministic.

Theorem 1. Every stationary (wide sense) random sequence £ has a unique decom-
position,

gn :§;+£rsn (D

where £ = (&) is regular and & = (&) is singular. Here " and &* are orthogonal
&, L&, forall n and m).

PROOF. We define .
gj: = E(€n|S(§))a frrz :En_g;v:'

Since &, L S(&) for every n, we have S(&") L S(€). On the other hand, S(¢") C S(¢),
and therefore S(£) is trivial (contains only random sequences that coincide almost
surely with zero). Consequently, £ is regular.

Moreover, H,(§) C H,(&*) ® H,(£") and H,(£*) C H,(§), H,(€") C Hy(8).
Therefore H,(§) = H,(&*) ® H,(£"), and hence

§() € Ha(&") @ Hu(€) 2

for every n. Since &, L S(§), it follows from (2) that

S(§) € Ha(£),

and therefore S(§) C S(&°) C H(&'). But & € S(€); hence H(E*) C S(€), and
consequently

which means that £° is singular.

The orthogonality of &° and £" follows in an obvious way from & € S(£) and
& L S(E).

This completes the proof of the theorem.

O

Remark 2. Decomposition (1) into regular and singular parts is unique (Problem 4).

2. Definition 2. Let £ = (,) be a nondegenerate stationary sequence. A random
sequence € = (&,) is an innovation sequence (for &) if

(a) e = (&,) consists of pairwise orthogonal random variables with E¢, = 0,
Ele,? = 1;

(b) Hy,(§) = Hy(e) foralln € Z.

Remark 3. The reason for the term “innovation” is that £,4; provides, so to speak,

new “information” not contained in H, () (in other words, “innovates” in H,,(§) the
information that is needed for forming H,11(£)).

The following important theorem establishes a connection between one-sided
moving averages (Example 4 in Sect. 1) and regular sequences.
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Theorem 2. A necessary and sufficient condition for a nondegenerate sequence & to
be regular is that there are an innovation sequence € = (¢,) and a sequence (a,) of
complex numbers, n > 0, with Z;O:O la,|? < oo such that

& = Z aen—r  (P-a.s.). 3)

k=0

PROOF. Necessity. We represent H,(£) in the form

Hn(f) = anl(g) ) Bn~

Since H, (&) is spanned by elements of H,_1 (&) and elements of the form 5¢,, where
B is a complex number, the dimension of B, is either zero or one. But the space
H, (&) is different from H,_1 (&) for any value of n. In fact, if B, is trivial for some
n, then, by stationarity, By is trivial for all k, hence H(§) = S(&), contradicting the
assumption that ¢ is regular. Thus, B, has the dimension dim B,, = 1.

Let 7, be a nonzero element of B,. Set

En = T )
(7]

where ||1,]|? = E |n,]? > 0.
For given n and k > 0, consider the decomposition

Hn(é.) = Hn—k(&) &) Bn—k+1 DD Bn.

Then e, g, ..., &, is an orthogonal basis in B,_;41 & - - - @ B, and
k—1
&= aEn i+ T i), )
j=0

where a; = E&,2,—;.
By Bessel’s inequality (6), Sect. 11, Chap. 2, Vol. 1,

oo

Y lal? < J&ll? < oo

j=0
It follows that Z/ﬁo a;e,—j converges in mean square, and then, by (4), Eq. (3) will

2
be established as soon as we show that 7, _¢(&,) L 0, k — oo.
It is enough to consider the case n = 0. Let &; = 71;(§p). Since

k
fg=To+ ) [~ A,
i=0

and the terms that appear in this sum are orthogonal, we have for every k > 0
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k k
S i —w_all® = || Y (Foi— #_iga)
i=0 i=0

= [k = 7ol < 4]|&o]I* < co.

2

Therefore the limit limy_,, 77—, exists (in mean square). Now 7_; € H_; () for
each k, and therefore the limit in question must belong to (,~.o H—x(&) = S(&).

2
But, by assumption, S(§) is trivial, and therefore &_; L 0, k — oo.

Sufficiency. Let the nondegenerate sequence £ have a representation (3), where
€ = (e,) is an orthonormal system (not necessarily satisfying the condition H,(§) =
H,(¢), n € Z). Then H,({) C H,(¢), and therefore S(§) = (), Hi(&) € Hy(e)
for every n. But £,41 L H,(¢), and therefore ¢,,1 L S(£), and at the same time
e = (g,) is a basis in H(&). It follows that S(£) is trivial, and consequently ¢ is
regular.

This completes the proof of the theorem.

O

Remark 4. It follows from the proof that a nondegenerate sequence € is regular if
and only if it admits a representation as a one-sided moving average,

&= @ln i, )
k=0

where € = &, is an orthonormal system (see the definition in Example 4 of Sect. 1).
In this sense, the conclusion of Theorem 2 says more, specifically that for a regular
sequence & there exist a = (a,) and an orthonormal system € = (&,) such that not
only (5) but also (3) is satisfied, with H,(§) = Hy(¢), n € Z.

The following theorem is an immediate corollary of Theorems 1 and 2.

Theorem 3 (Wold’s Expansion). If & = (&,) is a nondegenerate stationary se-
quence, then

o0
—g+ Y aE ©
k=0

where Y 2 la|* < 0o and € = (g,) is an innovation sequence (for £").

3. The significance of the concepts introduced here (regular and singular sequences)
becomes particularly clear if we consider the following (linear) extrapolation prob-
lem, for whose solution the Wold expansion (6) is especially useful.

Let Hy(¢) = L2(£°) be the closed linear manifold spanned by the variables
0= (..., 6, 50) Consider the problem of constructing an optimal (least-squares)
linear estimator &, of &, in terms of the “past” €0 = (..., &€ 1,&).

It follows from Sect. 11, Chap. 2, Vol. 1, that

&, = E(& | Ho(€)). ()
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(In the notation of Subsection 1, f,, = 7(&,).) Since £ and &* are orthogonal and
Ho (&) = Ho(&") @ Ho(&%), we obtain, by using (6),

& = E(& + & |Ho(€)) = E(& | Ho(€)) + E(& | Ho(€))
B(& [ Ho(¢) @ Ho (&) + E(&; | Ho(¢) @ Ho(€"))
E(& | Ho(€)) + E(& | Ho(€))

ey E(zakg,,k | HO@’))-

k=0

In (6), the sequence € = (g,) is an innovation sequence for " = (&), and therefore
Ho(&") = Hy(g). Therefore

5 £S+E<Zak5n k|HO >—£S+Zak€n k (8)

k=0

and the mean-square error of predicting &, by §o = (..., &-1,&o) is
n—1
op =El& - &P =D |l ©)

We can draw two important conclusions.

(a) If ¢ is singular, then for every n > 1 the error (in the extrapolation) o2
is zero; in other words, we can predict &, without error from its “past”

€0 =(...6-1,%)
(b) If ¢ is regular, then o2 < 0?2, and

o0

. 2 2
lim oy = > lal. (10)
k=0
Since

oo

Sl = Elgf?,

k=0

it follows from (10) and (9) that

~ L2
En_>0a n— oo,

i.e., as n increases, the prediction of &, in terms of & = (...,&_1,&) becomes
trivial (reducing simply to E £, = 0).

4. Let us suppose that £ is a nondegenerate regular stationary sequence. According
to Theorem 2, every such sequence admits a representation as a one-sided moving
average,
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&= aEn i (11)
k=0

where Y2 |ax|? < oo, and the orthonormal sequence ¢ = (&,) has the important
property that
H,(§) = H,(e), ne€Z. (12)

The representation (11) means (Subsection 3, Sect. 3) that £, can be interpreted as
the output signal of a physically realizable filter with impulse response a = (ay),
k > 0, when the input is € = (g,).

Like any sequence of two-sided moving averages, a regular sequence has a spec-
tral density f(\). But since a regular sequence admits a representation as a one-sided
moving average, it is possible to obtain additional information about the properties
of the spectral density.

In the first place, it is clear that

1) = 5l
where - -
o) = Ze_i)‘kak, Z lax|? < 0. (13)
k=0 k=0
Set -
B(z) = Zakzk. (14)
k=0

This function is analytic in the open domain |z| < 1, and since Y=, [ax|? < oo, it
belongs to the Hardy class H?, the class of functions g = g(z), analytic in |z| < 1,
satisfying

1 (7 .
sup o lg(re®)|?db < oo. (15)
0<r<1 4T J ¢
In fact,
1 [T , =
— | [®(re)?d0 = |ay|*r**
2 J_, P
and
2 2k 2
sup ap|“r* < ai|” < oo.
o, S < S

It is shown in the theory of functions of a complex variable (e.g., [64]) that the
boundary function <I>(e”‘), —m < XA <, of ® € H?, not identically zero, has the
property that

/ log |®(e™ ™) d\ > —o0. (16)

In our case,
1

FO) = l@(e™)P,
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where ® € H?. Therefore
log f(\) = —log 27 + 2log |®(e~™)],

and consequently the spectral density f(\) of a regular process satisfies
/ logf(\)d\ > —oc. a7

On the other hand, let the spectral density f(A) satisfy (17). It again follows
from the theory of functions of a complex variable that there is then a function
®(z) = D2 axz in the Hardy class H? such that (almost everywhere with respect
to Lebesgue measure)

F3) = @ )P,

Therefore, if we set ¢(\) = ®(e~™), we obtain

) = 5 le P,

where ¢(A) is given by (13). Then it follows from Corollary 5, Sect. 3, that £ ad-

mits a representation as a one-sided moving average (11), where ¢ = (g,) is an

orthonormal sequence. From this and from Remark 4 it follows that £ is regular.
Thus, we have the following theorem.

Theorem 4 (Kolmogorov). Let £ be a nondegenerate regular stationary sequence.
Then there is a spectral density f(\) such that

s
/ log f(A) dX\ > —oo. (18)
-7
In particular, f(\) > 0 (almost everywhere with respect to Lebesgue measure).

Conversely, if € is a stationary sequence with a spectral density satisfying (18),
the sequence is regular.

5. PROBLEMS

1. Show that a stationary sequence with discrete spectrum (piecewise-constant
spectral function F())) is singular.

2. Leto2 = E|¢, — &% & = E(& | Ho(€)). Show that if 62 = 0 for some n > 1,
the sequence is singular; if 02 — R(0) as n — oo, the sequence is regular.

3. Show that the stationary sequence ¢ = (§,), £, = ™%, where ¢ is a uniform
random variable on [0, 27, is regular. Find the estimator én and its mean-square
error Uf, and show that the nonlinear estimator

- 570 n
6= (2)
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provides an error-free prediction of &, by the “past” €% = (..., & 1,&), i.e.,
: 2
E| —&|°=0, n>1.

4. Prove that decomposition (1) into regular and singular components is unique.

6. Extrapolation, Interpolation, and Filtering

1. Extrapolation. According to the preceding section, a singular sequence ad-
mits an error-free prediction (extrapolation) of &,, n > 1, in terms of the “past,”
€9 = (...,&_1,&). Consequently, it is reasonable, when considering the problem
of extrapolation for arbitrary stationary sequences, to begin with the case of regular
sequences.

According to Theorem 2 of Sect. 5, every regular sequence { = (&,) admits a
representation as a one-sided moving average,

&= @En i (1
k=0

with Y7 |ax|* < oo and some innovation sequence ¢ = (g,). It follows from
Sect. 5 that the representation (1) solves the problem of finding the optimal (linear)
estimator &, = E(&, | Hy(&)) since, by (8) of Sect. 5,

én = Zakgnfk (2)
k=n
and
) n—1
o2 =El&—&lP =D lal*. 3)
k=0

However, this can be considered only a theoretical solution, for the following rea-
sons.

The sequences that we consider are ordinarily not given to us by means of their
representations (1), but by their covariance functions R(n) or the spectral densities
f(\) (which exist for regular sequences). Hence a solution (2) can only be regarded
as satisfactory if the coefficients a; are given in terms of R(n) or of f()), and the ¢
interms of ..., &1, &.

Without discussing the problem in general, we consider only the special case (of
interest in applications) when the spectral density has the form

1 .
FO) = oo™, “)
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where ®(z) = Y., biz* has radius of convergence r > 1 and has no zeros in
lz| < 1.
Let -
& = / N Z(dN) (5)

be the spectral representation of £ = (&,), n € Z.

Theorem 1. If the spectral density of § has the form (4), then the optimal (linear)
estimator &, of &, in terms of €° = (..., £_1,&) is given by

én = / @n(/\) Z(d>‘)v (6)
where ()

o i D, (e

%011(A) =e q)(e,i/\) (7)
and

O(2) = > b2
k=n

PROOF. According to Remark 4 on Theorem 2 of Sect. 3, every variable &, € H &)
admits a representation in the form

a- | T B NZWN). Gy € HylF), ®)

where Hy(F) is the closed linear manifold spanned by the functions e, = ¢ for

n<0(FO) = [ fv)dv).
Since (Sect. 2)

E |£n - £n|2

2

| [ @ - a0nz@y

- / €~ G, (V) 2F(A) dA,

the proof that (6) is optimal reduces to proving that

us

inf / 1M — G (VP F(N) dA = / N~ G NPFN AN ©)

@neHO(F) —T —

It follows from Hilbert-space theory (Sect. 11, Chap. 2, Vol. 1) that the optimal
function ¢, (\) (in the sense of (9)) is determined by the two conditions

(i) ‘»5'1()‘) € H(](F),

10
(i) €™ — @,(\) L Ho(F). (10)
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Since
ei)\ncpn(e—i)\) _ ei)\n[bne—iAn + bn+1e—i)\(n+1) 4. ] c Ho(F)

and, in a similar way, 1/®(e~") € Hy(F), the function ¢, (\) defined in (7) belongs
to Hy(F). Therefore in proving that ¢,()\) is optimal, it is sufficient to verify that,
for every m > 0, ' '

et)\n _ @n(A) L ez)\m’
ie.,

L= [ M= AN AN =0, w0

—T

The following chain of equations shows that this is actually the case:

_ 1 " iX(n+m) q)n(eii/\) —ix\ (2
b= 5 [N 1= T (e )y

—T

1 (™ . A L
=5 / A [H (e — B, (e7 )] D (e ) dN
™ —T
1 T n—1 o]
_ 27/ o\ () <Zbk€’)k) (szem) A\
e
- k=0 =0

n—1 oo
1 K . .
5 el}\l’l’l( § bkel)\(n—k)> ( § blel)\l> d\ =0,
7T
- k=0 =0

where the last equation follows because, for m > 0 and r > 1,
/ efi)\meikr d)\ =0.

This completes the proof of the theorem.
O

Remark 1. Expanding ¢,()) in a Fourier series
@n(/\) =Co+ C_leii)\ + C_Qefm)‘ e

we find that the predicted value &, of &, n > 1, in terms of the past, £ =
(-..,&-1,&0), is given by the formula

§=Coo +C1&1+C o o+---.

Remark 2. A typical example of a spectral density represented in the form (4) is

the rational function )
1

T o

P(e=™)
(e )
where the polynomials P(z) = ag+ai1z+---+apz’ and Q(z) = 1+biz+- - - +b,2?
have no zeros in {z: |z] < 1}.

)

)
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In fact, in this case it is enough to set ®(z) = P(z)/Q(z). Then ®(z) =
> reo C;7*, and the radius of convergence of this series is greater than one.

Let us illustrate Theorem 1 with two examples.

EXAMPLE 1. Let the spectral density be

1
F(A) = —(5+4cosA).
27
The corresponding covariance function R(n) has the shape of a triangle with
R(0)=5, R(+l1l)=2, R(n)=0 for|n| > 2. 11)

Since this spectral density can be represented in the form
SO = 24 e PP
27 ’

we may apply Theorem 1. We find easily that
oA

e

@1 (A) _ ei)\
Therefore é,, = 0 forall n > 2, i.e., the (linear) prediction of &, in terms of £ =
(-..,&-1,&) is trivial, which is not at all surprising if we observe that, by (11), the
correlation between &, and any of £y, &_1, . .. is zero forn > 2.

For n = 1, we find from (6) and (12) that

s —iX
b= [ Py xzan
1 1 e (EDE T
5/ (1+ 1 ﬂ)\)Z( )‘) _; k41 /_Tr Z(d)‘)
Z 2k+1£k 580 — 761+
k=0

EXAMPLE 2. Let the covariance function be
R(n)=d", |a| <1.

Then (see Example 5 in Sect. 1)

1 1—af?
f(A)—§m7
ie., .
) = o=@,
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where
(1= Ja2)>

®(z) = 1—az

= (1—[aP)/2 > (),
k=0

from which ¢, (\) = @", and therefore

é,, = / a"Z(d\) = a"&.

—T

In other words, to predict the value of ¢, from the observations &0 =
(-..,&-1,&), it is sufficient to know only the last observation &.

Remark 3. It follows from the Wold expansion of a regular sequence £ = (,) with

&= akui (13)
k=0

that the spectral density f(\) admits the representation

1

FO) = g-l@(e™)P, (14)

where -
O(z) =) . (15)

k=0

It is evident that the converse also holds, that is, if f(\) admits the representa-
tion (14) with a function ®(z) of the form (15), then the Wold expansion of &,
has the form (13). Therefore the problem of representing the spectral density in the
form (14) and the problem of determining the coefficients a; in the Wold expansion
are equivalent.

The assumptions that ®(z) in Theorem 1 has no zeros for |z| < 1 and that r > 1
are in fact not essential. In other words, if the spectral density of a regular sequence
is represented in the form (14), then the optimal estimator é,, (in the mean-square
sense) for &, in terms of £ = (..., &-1, &) is determined by formulas (6) and (7).

Remark 4. Theorem 1 (with the preceding Remark 3) solves the prediction problem
for regular sequences. Let us show that in fact the same answer remains valid for
arbitrary stationary sequences. More precisely, let

@:$+a,@=/)w%wm F(A) = E|Z(A)?,

—T

and let f*(\) = (1/27)|®(e~)|? be the spectral density of the regular sequence

& = (&). Then &, is determined by (6) and (7).
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In fact, let (see Subsection 3 of Sect. 5)

b= [ amzan. &= [ gz,
where Z"(A) is the orthogonal stochastic measure in the representation of the regu-
lar sequence &". Then

a@—&P:/ ™ — G, (V)2 F(dN)

—T

us

z/ WM—@OWfOMAE/ M — G FT(N) dA

=E|¢& - &2 (16)

But&, — & = & — & . Hence E ¢, — &,|2 = E|¢7 — £7]2, and it follows from (16)
that we may take ¢, () to be @7 ().

2. Interpolation. Suppose that £ = (&,) is a regular sequence with spectral density
f (). The simplest interpolation problem is the problem of constructing the optimal
(mean-square) linear estimator for &y from the results of the measurements {¢,, n =
+1,42,...} with omitted &.

Let H(&) be the closed linear manifold spanned by &,, n # 0. Then, according
to Theorem 2 of Sect. 3, every random variable 7 € HY(£) can be represented in the
form .

n= [ ez,
where  belongs to H°(F), the closed linear manifold spanned by the functions ",
n # 0. The estimator

&z/‘ﬂMﬂM) amn

will be optimal if and only if

inf El&—n2= inf / 11— (V)2 F(dN)

n€eHO () w€H(F) J 1
= [ - e Fan = Elgo &P
It follows from the perpendicularity properties of the Hilbert space H°(F) that
@(A) is completely determined (compare (10)) by the two conditions
(i) ¢(A) € H(F),

18
(i) 1 — @(\) L HO(F). (1%
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Theorem 2 (Kolmogorov). Let & = (&,) be a regular sequence such that

_: % < 0. (19)
fhen PN =1~ J% (20)
where o

o= 1)

and the interpolation error 52 = E |&y — &|? is given by 6% = 2ma.

PROOF. We shall give the proof only under very stringent hypotheses on the spectral
density, specifically that
0<c<f(N)<C< o0 (22)

It follows from (2) in (18) that

[ - e snyan=o @
for every n # 0. By (22), the function [1 — @(\)]f(\) belongs to the Hilbert space
L?([-n, ], B|—7, 7], u) with Lebesgue measure p. In this space the functions
{e" /\2r, n = 0,%1,...} form an orthonormal basis (Problem 10, Sect. 12,
Chap. 2, Vol. 1). Hence it follows from (23) that [1 — @(\)]f(A) is a constant, which
we denote by a.

Thus, the second condition in (18) leads to the conclusion that

o
PN =175 (24

Starting from the first condition (18), we now determine a.

By (22), we have ¢ € L?, and the condition ¢ € HY(F) is equivalent to the
condition that ¢ belongs to the closed (in the L? norm) linear manifold spanned by
the functions ¢, n # 0. Hence it is clear that the zeroth coefficient in the expansion
of ¢(A\) must be zero. Therefore

™ T d\
O:[ @(A)dAZQTF—Oé B m

and hence « is determined by (21).
Finally,
=l — &l = [ 1= p(IPS) A

™ £\ A
=T
PN T TS

=|af?

This completes the proof (under condition (22)).
O
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Corollary. If
@(/\) — Z ckeiAk’

0<|k|<N

50: Z Cl /ﬂ ei)\kZ(d/\) = Z Ckfk-

0<|k|<N - 0<[k|<N

then

EXAMPLE 3. Let f(\) be the spectral density in Example 2 above. Then an easy
calculation shows that

s

o = © e e Z(N) = —2
fo—/_ﬁl+‘a|2[€ +e M Z(dN) = 1+\a|2[£1+£’1]’

and the interpolation error is
52 _ 1- |C¥|2 )
L+ [af
3. Filtering. Let (0, &) = ((0,), (&), n € Z, be a partially observed sequence,
where 6 = (0,,) and £ = (&,) are respectively the unobserved and observed compo-
nents. Each of the sequences 6 and £ will be supposed stationary (wide sense) with
zero means and spectral representations

6, = / eMZy(d\) and &, = / e Ze (d)N).

—T —T

We write
Fo(A) =E|Zy(A)f, Fe(A)=E|Z(A)P

and
Foc(A) = EZp(A)Ze(A).

In addition, we suppose that 6 and £ are cgnnected in a stationary way, i.e., that their
covariance function Cov(6,, &,) = E6,¢,, depends only on the difference n — m.

Let Ry (n) = E 6,€; then

m

Rgg (I’l) = / eikn Feg (d)\).

The filtering problem of interest is the construction of the optimal (mean-square)
linear estimator 6, of 6, in terms of some observation of the sequence &.

The problem is easily solved under the assumption that 6, is to be constructed
from all the values &,,, m € Z. In fact, since 6, = E(6, | H(£)), there is a function
&n(A) such that

0, = / Gn(N) Ze(dN). (25)

—T
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As in Subsections 1 and 2, the conditions to impose on the optimal ¢, () are that

(i) Pu(A) € H(Fe),

(i) 6, — 6, L H(E).
From the latter condition we find
/ A= Foe(d)) — / e MG, (N) Fe(d\) =0 (26)

for every m € Z. Therefore, if we suppose that Fge () and F¢(\) have densities
foe(A) and fe (), we find from (26) that

[ U 3) - M0 d = o

If fe(\) > 0 (almost everywhere with respect to Lebesgue measure), we find
immediately that

En(A) = eM"p(N), 27)
where
@A) =foe(N) - fEN)
and fg@(/\) is the “pseudoinverse” of f¢ (\), i.e.,

RO A0 >0,
Q) = {Of ) = 0.

Then the filtering error is
E16,— 0, = | )~ eV () 8)

As is easily verified, ¢ € H(F¢), and consequently the estimator (25), with the
function (27), is optimal.

EXAMPLE 4 (Detection of a signal in the presence of noise). Let &, = 0, +,, where
the signal # = (6,) and the noise n = (7),) are uncorrelated sequences with spectral
densities fp(A) and f;,(\). Then

= [ e ze(an.
where

G\ = foN[fo(N) + (N7,
and the filtering error is

El6 2 = [ LoOUHOI) 5] ax

—Tr
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The solution (25) obtained earlier can now be used to construct an optimal esti-
mator 6, ,, of 6,,, based on observations &, k < n, where m is a given number in
Z. Let us suppose that £ = () is regular, with spectral density

F) = 5l ™),

where ®(z) = >_.2, axz*. By the Wold expansion,

oo
En = E AkEn—rk,
k=0

where ¢ = (g,) is white noise with the spectral decomposition

f= [ Mz,

—T

Since

én+m = E[9n+m |Hn(§)] = E[E[9n+m |H(§)] |Hn(§)} = E[én-&-m |Hn(§)}

and IS
B = / M S NB(e ) ZodN) = S dnsm i
—m k=—o00
where
= % /_ 7; MO\ D (e d), (29)
we have

éner = E [ Z &rH»mkak | Hn(g)‘| .

k=—o00

But H,(§) = H,(e), and therefore

én-‘rm = Z&n-l-m—kgk = / Z&n-‘rm—kei)\k ZE(dA)

k<n T | k<n
T oo
:/ ei)\n [Z &[+m€7i>\l
- =0

where ® is the pseudoinverse of ®.

P (e™) Ze(aN),

We have therefore established the following theorem.

Theorem 3. If the sequence £ = (&,) under observation is regular, then the optimal

(mean-square) linear estimator 0,1y of 0,4 in terms of &, k < n, is given by
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s

Opim = / e H,, (€7 ) Ze (dN), (30)

—T

where

71)\ Zal l)\l(p@ 71}\) (31)

and the coefficients ay. are defined by (29).
4. PROBLEMS

1. Show that the conclusion of Theorem 1 remains valid even without the hypothe-
ses that ®(z) has a radius of convergence r > 1 and that the zeros of ®(z) all lie
in|z| > 1.

2. Show that, for a regular process, the function ®(z) involved in (4) can be repre-
sented in the form

1 (o)
D(z) = V2mexp {2co + ;ckzk}, lz] <1,

where

1 /Mm.
k= %/ e log f(N) dA

—T

Deduce from this formula that the one-step prediction error o7 = |§ 1 — &% is
given by the Szeg—Kolmogorov formula

1 us
afzzwexp{%/ logf()\)d)\}.

Prove Theorem 2 without assuming (22).
4. Letasignal # and a noise 7, not correlated with each other, have spectral densities

(O8]

1 1 1 1

fH()‘) = o : |1—|—b167i>‘|2 and fﬂ()‘) = o : |1 +b26—i>\|2'

Using Theorem 3, find an estimator §n+m for 6,4, in terms of &, k < n, where
& = 6 + . Consider the same problem for the spectral densities

_ 1 —iX2 _ 1
Jo(\) = 27T|2—|—e | and f,(A\) = 5

7. The Kalman-Bucy Filter and Its Generalizations

1. From a computational point of view, the solution presented earlier for the problem
of filtering out an unobservable component 6 by means of observations of £ is not
practical since, because it is expressed in terms of the spectrum, it has to be carried
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out by analog devices. In the method proposed by Kalman and Bucy, the synthesis
of the optimal filter is carried out recursively; this makes it possible to do it with a
digital computer. There are also other reasons for the wide use of the Kalman—-Bucy
filter, one being that it still “works” even without the assumption that the sequence
(0, &) is stationary.

We shall present not only the usual Kalman—Bucy method but also its generaliza-
tions in which the recurrent equations for (6, &) have coefficients that may depend
on all the data observed in the past.

Thus, let us suppose that (8, &) = ((0,,), (&,)) is a partially observed sequence,
and let

0, = (61(n),...,0k(n)) and &, = (&1(n),...,&(n))

be governed by the recurrent equations

b1 = ao(n,&) +a1(n,§)0, +bi(n,§)e1(n+ 1) + ba(n,&)ea(n + 1), )
§nr1 = Ao(n,§) +A1(n,€)0, 4 B1(n,)e1(n+ 1) + Ba(n,&)ea(n + 1).

Here

61(1’1) = (511(1’1), N ,E1k(n)) and 62(1’1) = (521(1’1), . ,62[(71))

are independent Gaussian vectors with independent components, each of which is
normally distributed with parameters 0 and 1; ag(n, &) = (ao1(n,€), . .., an(n,§))
and Ao(n,&) = (An(m,€),...,Aqu(n,§)) are vector functions with nonan-
ticipative dependence on £ = {&,...,&,), ie., for a given n the functions
ap(n,&),...,Ap(n, &) depend only on &, . . ., &,; the matrix functions

bi(n,€) = |60 (m &)l ba(n,€) = 6 (n, E)],
Bi(n,&) = 1B (n,6)]l.  Ba(n,€) = |BP (n, &),
a1(n, ) = P (m&)ll, Ar(n€) = 1AL (n, €)l|

have orders k x k, k x I, I x k, I X I, k x k, I X k, respectively, and also depend on
& nonanticipatively. We also suppose that the initial vector (6, &) is independent
of the sequences €1 = (£1(n)) and g5 = (£2(n)).

To simplify the presentation, we shall frequently not indicate the dependence of
the coefficients on &.

So that the system (1) will have a solution with finite second moments, we as-
sume that E([|6o]|2 + ||€0]12) < oo (with x| = X, 22 for x = (xl,...,xk)>,

|a§i1)(n,€)\ <C, \A,:(jl)(n, &)| < C,andif g(n, €) is any of the functions ag;, Ag;, bl:(].l),
bgf), ijl), or Blg?), then E |g(n,£)|> < oo, n = 0,1,.... With these assumptions,
(0, &) has E(]|04[|* + [1€4]|*) < 00, n > 0.

Now let #§ = o{&,...,&,} be the smallest o-algebra generated by &, ..., &,

and

S

)

£
£

my, =E0,|.Z75), ~vu=E[(0, — m,) (6, —m,)" | FE].

n
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According to Theorem 1, Sect. 8, Chap. 2, Vol. 1, m,, = (my1(n), ..., m(n)) is an op-
timal estimator (in the mean-square sense) for the vector 6, = (01(n), ..., 60(n)),
and E~v, = E[(6, — m,) (0, — m,)*] is the matrix of errors of observation. Deter-
mining these matrices for arbitrary sequences (6, £) governed by Egs. (1) is a very
difficult problem. However, under a further supplementary condition on (6g, &),
namely, that the conditional distribution P(6y < a| &) is Gaussian,

P(0y < (x — mo)”
o <alé)= \/ﬂ exp T dx, 2

with parameters mo = mo(&o), 70 = Y0(£0), we can derive a system of recurrent
equations for m,, and ,, that also include the Kalman—Bucy filter equations.
To begin with, let us establish an important auxiliary result.

Lemma 1. Under the assumptions made earlier about the coefficients of (1), to-
gether with (2), the sequence (0, £) is conditionally Gaussian, i.e., the conditional

distribution function
P{eo S ao,...,en <an|ff}

is (P-a.s.) the distribution function of an n-dimensional Gaussian vector whose
mean and covariance matrix depend on (&, ..., &).

PROOF. We prove only the Gaussian character of P(6, < a|.Z$); this is enough to
let us obtain equations for m, and .
First we observe that (1) implies that the conditional distribution

P(Oni1 < a1,é1 < x| F5,0, =D)

is Gaussian with mean-value vector

Ao+ Ab = (ao -‘rCllb)

Ap +Ab

B — bob boB
“ \(boB)*BoB )’
where bo b = ble +b2b§, boB= blBI —|—b2B§, BoB :BIBT +BQB§
Let §, = (0,,&,) and t = (t1, ..., ty;). Then

Elexp(it*Cut1) |-, 0] = exp{it*(Ag(n, &) + A1 (n,£)6,) — 2r°B(n, &)1}, (3)

and covariance matrix

Suppose now that the conclusion of the lemma holds for some n > 0. Then

Elexp(it* A1 (n, €)6,) | Z5]
= exp {it" A1 (n,&)m, — 51 (A1 (n, )7, AT (n, )t}

Let us show that (4) is also valid when n is replaced by n + 1.
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From (3) and (4) we have

Elexp(ir* Guy1) | Z] = exp {it* (Ao(n,€) + As(n, E)m,)
—5t"B(n, &)1 — 3" (A (1, ) WA (n,))1}.
Hence the conditional distribution
P(0n1 < a, &1 < x| 7)) 5)

is Gaussian.
As in the proof of the theorem on normal correlation (Theorem 2 in Sect. 13,
Chap. 2, Vol. 1) we can verify that there is a matrix C such that the vector

1= w1 = E(Oni1 [ Z7)] = Cléur — E(Guir | 7))
has the property that (P-a.s.)

Eln(&s1 — B | 7)) [ F2] = 0.

This implies that the conditionally Gaussian vectors 7 and &, 1, considered under
the condition .%¢, are independent, i.e., (P-a.s.)

P(n € A, &1 € B|F;) =P(n € A|F5) - P(&us1 € B F)

forall A € B(RY), B € B(R").
Therefore, if s = (s1,...,$,), then

Elexp(is*0,11) | .Z5, &ui]
= E{exp(is*[E(0us1 | -F5) + 1+ Cléns1 — E(Gurr [ FE) | F5, s}
= exp{is* [E(0nr1 | Z5) + Cléwsr — E(&ur | F)]}
x Elexp(is™n) | 5, &ut1]
= exp{is* [E(0ur1 | Z7) + Cléwsr — E(&upr |- F9)]]}
x E(exp(is*n) | Z5). (6)

By (5), the conditional distribution P(n < y|.%5) is Gaussian. With (6), this
shows that the conditional distribution P(6, 41 < a|.Z} 1) is also Gaussian.

This completes the proof of the lemma.
O

Theorem 1. Let (0, &) be a partially observed sequence that satisfies the system (1)
and condition (2). Then (m,, v,) obey the following recursion relations:

Mpy1 = [ag + aymy] + [b o B+ a;7,A%][B o B+ A17,A;]®

X[Ep1 — Ao — Ay, (7
Y1 = [a17mai +bob] —[boB+ary,Aj][BoB +A1'YnAﬂ@

x[bo B+ a1v,A7]". 8)
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PROOEF. From (1),

E(0ur1 | Z5) = a0 + aimy,  E(&uy1 | .F5) = Ao + Aymy, )
and

0n+1 — E(0n+1 |%§) =da [9,1 — mn] + b181(l’l + 1) + ngg(fl + 1),

(10)
Surr — E(Gup1 | F5) = A1[0, — my) + Bier(n + 1) + Boga(n + 1),

Let us write

di1 = Cov(Ops1, Ourr | FF)

= E{[HHH —E(0n1 \yng)]wnﬂ — E(0ht1 |yfﬂ* |9n£}7
diz = Cov(Oui1, &ntr1 | FF)

= E{[fur1 — E[6us1 | F9)|[€ns1 — E(&usr | " | Fs ),
dy = COV(§n+la Ent1 |fn£)

= E{[fnﬂ —E(&it1 |5[nf)] [§n+1 — E(&it1 \jf)]* |5[n£}

Then, by (10),
di1 :alfy,,a’{—l—bOb, dyo :a17nAI+bOB, doo =A1’ynAT +BoB. (11)

By the theorem on normal correlation (see Theorem 2 and Problem 4 in Sect. 13,
Chap. 2, Vol. 1),

M1 = E(Opi1 | FF, Enp1) = E(Oni1 | FF) + di2dSy (&1 — E(&ugr | FF))

and
Yn+1 = COV(011+17 0n+1 |yn§7 511+1) =di — dlZd%dTQ-

If we then use the expressions from (9) for (6,41 |.Z¢) and E(¢,11 | .#¢) and
those for dy1, di2, dao from (11), we obtain the required recursion formulas (7) and
(8).

This completes the proof of the theorem.

O
Corollary 7. If the coefficients ag(n, ), ...,Ba(n, £) in (1) are independent of &,
the corresponding method is known as the Kalman—Bucy method, and Egs. (7) and
(8) for m,, and ~y, describe the Kalman—Bucy filter. It is important to observe that in
this case the conditional and unconditional error matrices -y, agree, i.e.,

Yn = By = E[(00 — my) (0, — my)"].

Corollary 8. Suppose that a partially observed sequence (0, &,) has the property
that 0, satisfies the first equation (1), and that &, satisfies the equation

gn = Ao(l’l - 17 g) +A1(f’l - 17 é-)en
+B1(n—1, &)ei(n) + Ba(n — 1, E)ea(n). (12)



100 6 Stationary (Wide Sense) Random Sequences: L?-Theory

Then evidently
Enr1 = Ao(n, &) + As(n, E)lao(n, &) +ar(n, €)0,
+b1(n, §)er(n+1) + ba(n, §)ez(n+1)
+B1(n, §)er(n+ 1) + Ba(n, €)ea(n + 1),

and with the notation

Ag = A0+A1a0, A = A1111,
By =A1by + By, By =Ashy + Bo,

we find that the case under consideration also obeys the model (1) and that m, and
Yu satisfy (7) and (8).

2. We now consider a linear model (cf. (1))

9,,.;,.1 =ag+ a0, + agﬁn =+ b1€1(71 =+ 1) =+ bgé‘g(n =+ 1),

(13)
§n+1 = AO +A19n +A2€n + 3151(11 + 1) + B2€2(n + 1)’

where the coefficients ag, ..., By may depend on n (but not on &), and ¢;(n) are
independent Gaussian random variables with E ¢;(n) = 0 and E<7(n) = 1.

Let (13) be solved with initial values (6, &) such that the conditional distri-
bution P(fy < a|&) is Gaussian with parameters my = E(6p, §) and v =
Cov (6o, 00| &) = E~o. Then, by the theorem on normal correlation and (7) and
(8), the optimal estimator m, = E(6, | #¢) is a linear function of &y, &1, . .., &,.

This remark makes it possible to prove the following important statement about
the structure of the optimal linear filter without the assumption that the random
variables involved are Gaussian.

Theorem 2. Let (6, §) = (0,, &)n>0 be a partially observed sequence that satisfies
(13), where e;j(n) are uncorrelated random variables with E e(n) = 0, Ec}(n) =
1, and the components of the initial vector (0, &o) have finite second moments. Then

the optimal linear estimator m,, = E(0,|&o,...,&,) satisfies (7) with ag(n, &) =
ap(n) + az(n)&,, Ao(n, &) = Ag(n) + A2(n)&,, and the error matrix

;Yn - E[(Qn - mn)(en - ﬁln)*]
satisfies (8) with initial values

iy = Cov(bo, &) Cov® (&, &) - o,

(14
’?0 = COV(90, 00) — COV(H(), 50) COV@(&), 60) C0V>k (90, fo)

For the proof of this theorem, we need the following lemma, which reveals the
role of the Gaussian case in determining optimal linear estimators.

Lemma 2. Let (o, 3) be a two-dimensional random vector with E(a? + B?) <
00, and (&, B) a two-dimensional Gaussian vector with the same first and second
moments as («, 3), i.e

Ea =Eo', EF =Ep, i=1,2; Eaf=Eag.
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Let A\(b) be a linear function of b such that
A(b) = E(a| B = b).

Then \(B) is the optimal (in the mean-square sense) linear estimator of « in terms
of B, ie., R
E(a|B) = A(B).
Here EA() = Ea.
PROOF. We first observe that the existence of a linear function \(b) coinciding with

E(a|B = b) follows from the theorem on normal correlation. Moreover, let A(b)
be any other linear estimator. Then

Ela - X(B)]* > Ela - A(B))?

and since \(b) and A(b) are linear and the hypotheses of the lemma are satisfied, we
have

Efo — X(8)]” = E[a — A(B)” > E[a — A(B)]” = E[a - A(B)]",
which shows that A(3) is optimal in the class of linear estimators. Finally,
EA(8) = EA(S) — E[E(@|5)) = Ea - Ea.

This completes the proof of the lemma.
O

PROOF OF THEOREM 2. We consider, besides (13), the system

énJrl =ag + alén + azén + b1€~11(l’l + 1) + bgglg(n + 1),

. N . (15)
Enp1 =Ag +A10, + A28, + Biéa1(n+ 1) + Baéaa(n + 1),

where £;(n) are independent Gaussian random variables with E&;;(n) = 0 and
E&i(n) = 1. Let (60,&o) also be a Gaussian vector that has the same first mo-
ments and covariance as (6o, o) and is independent of £;(n). Then, since (15) is
linear, the vector (90, 0y, 50, e ,5,,) is Gaussian, and therefore the conclusion
of the theorem follows from Lemma 2 (more precisely, from its multidimensional
analog) and the theorem on normal correlation.

This completes the proof of the theorem.

O
3. Let us consider some illustrations of Theorems 1 and 2.

EXAMPLE 1. Let 8 = (6,) and n = (1),) be two stationary (wide sense) uncorrelated
random sequences with E 6, = En, = 0 and spectral densities

1 1 1

AN=—""-"—— d f(N)=— —F5,
f@( ) 27r‘1+b167’>‘|2 an fl( ) o ‘1+b2€7'/\|2

where |b1| < 1, |ba] < 1.
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We shall interpret 6 as an informative signal and 7 as noise and suppose that
observation produces a sequence { = (&,) with

gn :0n+nn~

According to Corollary 2 to Theorem 3 in Sect. 3, there are (mutually uncorrelated)
white noises €1 = (£1(n)) and e = (€2(n)) such that

0,1_;,_1 + b0, = 51(71 + 1), M1 + bom, = 82(}1 + 1)

Then

§nt1 = Opg1 + M1 = —b10, — bony +e1(n+ 1) +e2(n+ 1)
= —bo(0p +mn) — 0,(b1 —b2) +e1(n+1) +e2(n+1)
= 7b2€n - (bl - b2)0n + 81(]’1 + 1) + 62(]’1 + ].)

Hence 6 and ¢ satisfy the recursion relations

Opy1 = —b10, +e1(n+ 1),

16
§n+1 :*(bl 7b2)0n*b2€n+€1(n+1)+52(n+1)7 ( )

and, according to Theorem 2, m,, = E(On |0, - -, &) and 7, = E(6, —m,)? satisfy
the following system of recursion equations for optimal linear filtering:

b1(b1 — ba)yn
5 [Sn+1 + (b1 — b2)my, + ba&,),
2+ (b1 — ba)?, (€1 + (b1 2)m 2&n]

[1 4 b1(b1 — ba)va)?
2+ (b1 — b2)?*ya

mpy1 = —bym, +
a7

Tn+1 = b?'}’n +1-

Let us find the initial conditions under which we should solve this system. Write
diy = E0?%, diy = E0,¢,, dys = E 2. Then we find from (16) that

dy = bidy; + 1,
di2 = b1 (b1 — ba)d11 + bibadi2 + 1,
dos = (b1 — bo)?dyy + b3das + 2bo(by — ba)dra + 2,

from which
1 1 2 — b% — b%

dii=——, dyp=—, dp=—— L 72
11 l—b%’ 12 l_b%a 22 (l_b%)(l_bg)v

which, by (14), leads to the following initial values:

oy, 112
mO*@ﬁO*Q_bg_bgg(),
a? 11 2 1-032 1 (18)
Yo =dip — =2 2

dy  1-b7 (1—b2)(2-b]—b3) 2-b]—b3
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Thus the optimal (in the least-squares sense) linear estimators m,, for the signal
0, in terms of &y, . . ., &, and the mean-square error are determined by the system of
recurrent equations (17), solved under the initial conditions (18). Observe that the
equation for -, contains no random components, and consequently the numbers -,
which are needed for finding m,, can be calculated in advance, before solving the
filtering problem.

EXAMPLE 2. This example is instructive because it shows that the result of Theo-
rem 2 can be applied to find the optimal linear filter in a case where the sequence
(0, €) is described by a (nonlinear) system that is different from (13).

Lete; = (e1(n)) and €5 = (e2(n)) be two independent Gaussian sequences of
independent random variables with E&;(n) = 0 and E€?(n) = 1,n > 1. Consider a
pair of sequences (0, &) = (0,,,&,), n > 0, with

9n+1 =ab, + (1 + 9,,)81(71 + 1),

19
Ent1 :A9n+52(1’£+1). (19)

We shall suppose that g is independent of (e1,¢5) and that 8y ~ A (mg, 7o)-
System (19) is nonlinear, and Theorem 2 is not immediately applicable. How-

ever, if we set

1446,

E1(n+1) = E(L+6,)

€1 (n + 1),
we can observe that E&;(n) = 0, E&;(n)é1(m) = 0, n # m, Ec?(n) = 1. Hence
we have reduced (19) to a linear system,

0n+1 = a10n + blgl(}’l + 1),

Enr1 = A10y +e2(n+ 1), 20
where by = \/E(1 + 6,)?, and {é1(n)} is a sequence of uncorrelated random vari-
ables.

Now (20) is a linear system of the same type as (13), and consequently the op-
timal linear estimator m,, = E(Qn | €0, ..., &) and its error 4, can be determined
from (7) and (8) via Theorem 2, applied in the following form in the present case:

a1A1%n

iy = M T a2= lSn — Ay, ;
g1 = @it + e [€nr1 — Aty
N 24 2 (alAl’Ayn)2
n = wt+b — T a2z
Ant1 = (a79n + b1(n)) 1+ A%,
where by (n) = \/E(1 + 6,)? must be found from the first equation in (19).
EXAMPLE 3 (Estimators for parameters). Let @ = (61, ..., 6;) be a Gaussian vector

with E 0 = mg and Cov (6, 0) = ~y. Suppose that (with known m and ) we look
for the optimal estimator of 6 in terms of observations on an /-dimensional sequence
&= (&), n >0, with
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§nr1 = Ao(n, §) +A1(n, §)0 +Bi(n, {)er(n+1), & =0, (21)

where €4 is as in (1).
Then we have from (7) and (8) that m, = E(# | #$) and ~, can be found from

Myi1 = my + Y,AT (1, §)[(B1B7) (n, §) + A1 (n, §) A7 (n, 'f)}@
X [§nt1 — Ao(n, &) — Ar(n, §)my], (22)
Ynd+1 = Yn — VnA:{ (I’l, 5) [(BlBT)(nv g) + Al (l’l, g)fYnAT (I’l, 5)]®A1 (I’L, 5)7}1

If the matrices B1 B} are nonsingular for all » and &, the solution of (22) is given
by
-1

E+7) Ai(L,€)(B1B]) " (i,£)A (i, €)

myy1 =

X

Yn+1 =

where E is the identity matrix.

4. PROBLEMS

1. Show that the vectors m,, and 6,, — m,, in (1) are uncorrelated:
E[m; (6 —m,)] = 0.

2. In (1)—(2), let -y and the coefficients other than ag(n,&) and Ag(n,€) be inde-

pendent of “chance” (i.e., of &). Show that then the conditional covariance 7, is

independent of “chance”: y, = E,.

Show that the solution of (22) is given by (23).

4. Let (6,&) = (6,,&,) be a Gaussian sequence satisfying the following special case
of (1):

[O8]

Op1 =ab, +be1(n+1), &p1 =A0,+ Bea(n+1).
Show thatif A # 0, b # 0, B # 0, the limiting error of filtering, v = lim,,— oo Yn»
exists and is determined as the positive root of the equation

BX(1 —a?) b2B?
2 2 _
7+[A@_b e =0
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5. (Interpolation, [54, 13.3]) Let (6, &) be a partially observed sequence governed
by recurrence relations (1) and (2). Suppose that the conditional distribution

a(m,m) = P(0 < a| F;)

of 0, is Gaussian.
(a) Show that the conditional distribution

7a(m,n) =P(6,, < a| ﬁf), n>m

)

is also Gaussian, m,(m,n) ~ A (u(m,n),y(m,n)).

(b) Find the interpolation estimator p(m, n) (of ,, given .#¢) and the matrix
¥(m,n).

6. (Extrapolation, [54, 13.4]) In (1) and (2), let

ap(n,§) = aog(n) +az(n)y,  ai(n,§) = ai(n),
Ao(n,§) = Ao(n) +A2(n)és, A1(n,§) = A1(n).

(a) Show that in this case the distribution 7, ,(m,n) = P(6, < a,&, < b|.F5) is
Gaussian (n > m).

(b) Find the extrapolation estimators
E(0x|.7;) and  E(& 7).

7. (Optimal control, [54, 14.3]) Consider a “controlled” partially observed system
(0, &n)o<n<n, where

Opn1 =ty + 0, + ber(n+ 1),
§n+1 = Gn + 62(1/1 + 1)
Here the “control” u, is 34’”5 -measurable and satisfies E u,% < ooforall) <n<

N — 1. The variables 1 (n) and e3(n), n = 1, ..., N, are the same as in (1), (2);
50 = 0, 90 ~ '/V(m7’7)

We say that the “control” u* = (uf, ..., uy_4) is optimal if V(u*) = sup, V(u),
where
N—1
V() =E [2(93 +ul) + 0% .
n=0
Show that

M;:—[1+P,1+1]+Pn+1m:7 n=0,....N—1,

-1
. a ", a#0,
0, a=0,

where
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(Pu)o<n<n are found from the recurrence relations
P,=1+P, 1 —P. [l+Pu1]T, Py=1,
and (m) are determined by
M1 =ty + 9 (L+7) (G —my), 0<n <N -1,
with m§ = m and (") by
T =T+ 1= ()21 +)T, 0<n<N-1,

with 7§ = 7.



Chapter 7 )
Martingales iy

1. Definitions of Martingales and Related Concepts

Martingale theory illustrates the history of mathematical probability; the basic definitions
are inspired by crude notions of gambling, but the theory has become a sophisticated tool
of modern abstract mathematics, drawing from and contributing to other fields.

J. L. Doob [19]

1. The study of the dependence between random variables arises in various ways in
probability theory. In the theory of stationary (wide sense) random sequences, the
basic indicator of dependence is the covariance function, and the inferences made in
this theory are determined by the properties of that function. In the theory of Markov
chains (Sect. 12 of Chap. 1, Vol. 1 and Chap. 8) the basic dependence is supplied by
the transition function, which completely determines the development of the random
variables involved in Markov dependence.

In this chapter (see also Sect. 11 of Chap. 1, Vol. 1) we single out a rather wide
class of sequences of random variables (martingales and their generalizations) for
which dependence can be studied by methods based on the properties of conditional
expectations.

2. Let (2,.%#,P) be a given probability space with a filtration (flow), i.e., with a
family (#,) of o-algebras .%,, n > 0, such that %, C %#; C ... C & (“filtered
probability space”).

Let Xp, X3, ... be a sequence of random variables defined on ($2,.%, P). If, for
each n > 0, the variable X,, is .%#,-measurable, the set X = (X,, %,)n>0, Or simply
X = (X, #,), is called a stochastic sequence.

If a stochastic sequence X = (X,,, %,) has the property that, for each n > 1, the
variable X, is .%,_1-measurable, we write X = (X,,, %#,_1), taking F_; = Fy, and
call X a predictable sequence. We call such a sequence increasing if Xo = 0 and
X, < X,41 (P-as.).
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Definition 1. A stochastic sequence X = (X,,.%,) is a martingale, or a submartin-
gale, if, for all n > 0,
E [X,| < oo (1)

and,

E(Xyt1| %) =X, (P-as.) (martingale)
or 2)
E(X,t1] %) > X, (P-as.) (submartingale).

A stochastic sequence X = (X, %,) is a supermartingale if the sequence —X =
(=X, Z,) is a submartingale.
In the special case where %, = ZX, where ZX = o0{Xy,...,X,}, and the

stochastic sequence X = (X,,.%,) is a martingale (or submartingale), we say that
the sequence (X, ),>o itself is a martingale (or submartingale).

It is easy to deduce from the properties of conditional expectations that (2) is
equivalent to the property that, for every n > 0 and A € %,

[ KordP = [ x,ap
A A

or 3)

[Xeap= [x,ap.
A A

EXAMPLE 1. If (&,),>0 is a sequence of independent random variables such that
El|é)] < o0, E& =0,and X, = &0+ - + &, Fu = {0, .., &}, the stochastic
sequence X = {X,,,.%,) is a martingale.

EXAMPLE 2. If (&,),>0 is a sequence of independent random variables such that
E|&| < oo and EE, = 1, the stochastic sequence (X,,.%,) with X, = [[}_, &
Fn = 0{&,...,&} is also a martingale.

EXAMPLE 3. Let £ be a random variable with E || < oo and
FoCFC - C T

Then the sequence X = (X,,, .%,) with X,, = E(£ | .%,), is a martingale called Levy’s
martingale.

EXAMPLE 4. If (§,),>0 is a sequence of nonnegative integrable random variables,
the sequence (X,,) with X,, = & + - - - + &, is a submartingale.

EXAMPLE 5. If X = (X,,.%,) is a martingale and g(x) is convex downward with
E |g(X,)| < 0o, n > 0, then the stochastic sequence (g(X,,), %,) is a submartingale
(as follows from Jensen’s inequality; see Sect. 6 of Chap. 2, Vol. 1).

If X = (X,,%#,) is a submartingale and g(x) is convex downward and nonde-
creasing, with E [g(X,,)| < oo for all n > 0, then (g(X,), %,) is also a submartin-
gale.
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Assumption (1) in Definition 1 ensures the existence of the conditional expecta-
tions E(X,11]|%,), n > 0. However, these expectations can also exist without the
assumption that E \X,,+1| < o0. Recall that, according to Sect. 7 of Chap. 2, Vol. 1,
E(X,. 1| %) and E(X, | #,) are always defined. Let us writt A = B (P-as.)
when P(AAB) = 0. Then if

{w: E(X,\ | Z) <oofU{w: E(X, |.Z,) <o} =Q (P-as.)
we say that E(X,,11 | .%,) is also defined and is given by

E(Xn+1 ‘ﬁn) = E(er_-i-l |</6Zn) - E(Xn_+1 |°ng1)
After this, the following definition is natural.

Definition 2. A stochastic sequence X = (X,,.%,) is a generalized martingale (or
submartingale) if the conditional expectations E(X,,41 | .-%,) are defined for every
n > 0 and the corresponding condition (2) is satisfied.

Notice that it follows from this definition that E(X, , | .%,) < oo for a general-
ized submartingale and that E(|X,,11||.%,) < oo (P-a.s.) for a generalized martin-
gale.

3. In the following definition we introduce the concept of a Markov time, which
plays a very important role in the subsequent theory.

Definition 3. A random variable T = t(w) with values in the set {0,1, ..., 400}
is a Markov time (with respect to (.%,)) (or a random variable independent of the
future) if, for each n > 0,

{t=n} € .F,. &)

When P(1 < co0) = 1, a Markov time 7 is called a stopping time.

Let X = (X,,.%,) be a stochastic sequence, and let T be a Markov time (with
respect to (.%,)). We write

ZX W)l {z—py (w)

(hence we set X, = 0 and X; = 0 on the set {w: T = co}).
Then, for every B € %4(R),

[ee]
{w:XTeB}:{w:XOOEB,‘Czoo}—FZ{XneB,Tzn}eﬁ,
n=0

and consequently, X = X;(,,)(w) is a random variable.
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EXAMPLE 6. Let X = (X,,,.%,) be a stochastic sequence, and let B € %(R). Then
the time of first hitting the set B, that is,

13 = min{n > 0: X,, € B}
(with 15 = +o0 if {.} = @) is a Markov time, since
{TB:n}:{XO ¢B7 AR Xn—l ¢Ba Xn EB} ECgzn

for every n > 0.

EXAMPLE 7. Let X = (X,,, #,) be a martingale (or submartingale) and T a Markov
time (with respect to (.%,)). Then the “stopped” sequence X* = (X, n1,-%,) is also
a martingale (or submartingale).

In fact, the equation

n—1

Xont = Z Xml{‘r:m} + an{‘an}

m=0
implies that the variables X, 1; are .%,-measurable, are integrable, and satisfy
X(n+1)m — AnAt = I{T>n}(Xn+1 - Xn)7
whence
EX(i1yac = Xone| Fal = Iixsny EXup1 = Xu | F] =0 (or > 0).

Every flow (.%,) and Markov time T corresponding to it generate a collection of
sets
Fr={Ae F:An{t=n} e %, foralln > 0}.

It is clear that Q € %; and .%; is closed under countable unions. Moreover, if
A€ ZthenAN{t=n}={t=n}\(AN {1 =n}) € %, and therefore A € Z,.
Hence it follows that .%; is a o-algebra.

If we think of .7, as the collection of events observed up to time n (inclusive),
then .%; can be thought of as the collection of events observed until the “random”
time 7.

It is easy to show (Problem 3) that the random variables T and X; are .%.-
measurable.

4. Definition 4. A stochastic sequence X = (X, .%,) is a local martingale (or sub-
martingale) if there is a (localizing) sequence (T )i>1 of finite Markov times such
that T < Tyy1 (P-as.), T, 1 oo (P-a.s.) as k — oo, and every “stopped” sequence
X% = (Xyanl{r,>03, Fn) is a martingale (or submartingale).

In Theorem 1 below, we show that in fact the class of local martingales coincides
with the class of generalized martingales. Moreover, every local martingale can be
obtained as a “martingale transform” from a martingale and a predictable sequence.
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Definition 5. Let Y = (Y, %, ),>0 be a stochastic sequence and V = (V,,, #,_1)u>0

a predictable sequence (.#_1 = .%y). The stochastic sequence V-Y = ((V-Y),, %#,)
with

n
(V-Y)y = Vo¥o + Y _ViAY, (5)
i=1
where AY; = Y; — Y;_1, is called the transform of Y by V. If, in addition, Y is a
martingale (or a local martingale), we say that V - Y is a martingale transform.

Theorem 1. Let X = (X,,, %,)n>0 be a stochastic sequence, and let Xy = 0 (P-a.s.).
The following conditions are equivalent:

(a) X is a local martingale;

(b) X is a generalized martingale;

(c) X is a martingale transform, i.e., there are a predictable sequence V =
(Va, Fu—1) with Vo = 0 and a martingale Y = (Y,,.%,) with Yo = 0 such
thatX =V -Y.

PROOF. (a) = (b). Let X be a local martingale, and let () be a localizing se-
quence of Markov times for X. Then, for every m > 0,

E“Xm/\u;‘]{‘tk>0}] < 09, (6)

and therefore
ElX(r1nvllrsm] = EllXnr1 gz sy ] < oo @)
The random variable Iy, -} is F,-measurable. Hence it follows from (7) that
EllXus1tosny | Zn] = Igsny E[[Xuq1] | Z0] < 00 (P-as.).
Here /{7, -,y — 1 (P-as.) as k — oo, and therefore
EllX,s1] | 7] < 00 (P-as.). ®)

Under this condition, E[X,+1|-%,] is defined, and it remains only to show that
EX,+1 | %) = X, (P-as.).
To do this, we need to show that

[ KodP = [ x.ap
A A

for A € %,. By Problem 7, Sect.7, Chap.2, Vol. 1, we have E[|X,11].%,] < oo
(P-a.s.) if and only if the measure fA | X, +1|dP, A € Z,, is o-finite. Let us show
that the measure | 1 Xu|dP, A € .7, is also o-finite.

Since X™ is a martingale, [X™| = (|Xt,anll{y,>0}, Fn) is a submartingale, and
therefore (since {t; > n} € .%,)
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/ |X,|dP = / I Xone >0y d P
An{t>n} An{t>n}

< / IX(n+1)At {r>0y AP = / | Xoi1|dP.
Aﬁ{‘tk>n} Aﬂ{‘tk>n}

Letting k — oo, we have

/|X,,|dF’§/|X,l+1|dP,
A A

from which there follows the required o-finiteness of the measure | L XuldP, A €
T

Let A € %, have the property [, |X,41|d P < oo. Then, by Lebesgue’s theorem
on dominated convergence, we may take limits in the relation

/ Xn d P == X,,+1 d P,
An{my>n} An{y>n}

which is valid since X is a local martingale. Therefore

[x.dP= [ x,1ap
A A

for all A € .%, such that / |Xnt1]dP < oo. It then follows that the preceding

A
relation also holds for every A € .%,, and therefore E(X,,+1 | %,) = X,, (P-a.s.).
(b)= (c). Let AX, = X, — X,—1, Xo = 0,and Vy = 0, V, = E[|AX,|| Zu-1],

n > 1. We set
vl v, #£0
W,=VZ [=4 " # ,
0, Vn:O

Yo=0,and Y, = >_7_; W;AX;, n > 1.1tis clear that
EHAYnH'g.nfl] S 17 E[AY,,|9,,,1] :Oa

and consequently, Y = (Y, %,) is a martingale. Moreover, Xo = V - ¥y = 0 and
A(V-Y), = AX,. Therefore
X=V.Y.

(c)=(a). Let X = V- Y, where V is a predictable sequence, Y is a martingale, and
Vo =Yy = 0. Set
T = min{n > 0: |V,41| > k}

letting T, = oo if the set {-} = &. Since V,y; is .%,-measurable, the variables T
are Markov times for every k > 1.
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Consider the sequence X% = ((V - Y)uaq g, 503, Fu). On the set {1, > 0}, the
inequality |V, | < kis in effect. Hence it follows that E |(V - ¥)aq I{r, 50| < 00
for every n > 1. In addition, for n > 1,

E{[(V’ Y)(’1+1)/\TA - (V : Y)’lATk] I{n>0} ‘ yn}
= Ly>0) Vs yan  EY s vag — Yang | Fn} =0

since (Example 7) E{Y(,4-1)r, — Yoy |-F} = 0.

Thus for every k > 1 the “stopped” sequence X™ is a martingale, T; 1 co (P-a.s.),
and consequently X is a local martingale.

This completes the proof of the theorem.

O

5. EXAMPLE 8. Let (7,),>1 be a sequence of independent identically distributed
Bernoulli random variables with P(n, = 1) = p, P(n, = —=1) = ¢, p+ ¢ = 1.
We interpret the event {7, = 1} as the success (gain) and {r, = —1} as the failure
(loss) of a player at the nth turn. Let us suppose that the player’s stake at the nth turn
is V,,. Then the player’s total gain through the nth turn is

n
Xo=> Vii=Xo-1+ Vatt,  Xo=0.
i=1

It is quite natural to suppose that the amount V,, at the nth turn may depend on the
results of the preceding turns, i.e., on Vq,...,V,_1 and on 1y, ...,1,—1. In other
words, if we put Fp = {&,Q} and F, = o{m,...,n.}, then V, is an F#,_;-
measurable random variable, i.e., the sequence V = (V,,, .%,_1) that determines the
player’s “strategy” is predictable. Putting Y,, = n1 + - - - + 1, we find that

X, = Zl ViAY;,

i.e., the sequence X = (X,,,.%,) with Xy = 0 is the transform of ¥ by V.
From the player’s point of view, the game in question is fair (or favorable or
unfavorable) if, at every stage, the conditional expectation

E(Xy41 — Xu|-%4) =0 (or > 0or <0).
Moreover, it is clear that the game is

fairifp =q = %7
favorable if p > q,
unfavorable if p < q.
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Since X = (X, %) is a

martingale if p = q = %,
submartingale if p > q,

supermartingale if p < g,

we can say that the assumption that the game is fair (or favorable or unfavorable)
corresponds to the assumption that the sequence X is a martingale (or submartingale
or supermartingale).

Let us now consider the special class of strategies V. = (V,,, #,_1)n>1 with
Vi =1and (forn > 1)

_ 27[71 if m = _17 vy -1 = _17
Vi = { 0 otherwise. ©)

In such a strategy, a player, having started with a stake V; = 1, doubles the stake
after a loss and drops out of the game immediately after a win.
Ifm =—1,...,n, = —1, the total loss to the player after n turns will be

n

221'—1 —on _ 1.

i=1
Therefore, if also 7,41 = 1, then we have
Xpt1 =X+ Vi1 =—(2"-1)+2"=1.

Lett=min{n > 1: X, =1}.Ifp=¢g = %, i.e., the game in question is fair,
then P(t=n) = (3)", P(t < o0) =1, P(X; = 1) = 1, and EX; = 1. Therefore,
even for a fair game, by applying the strategy (9), a player can in a finite time (with
probability 1) complete the game “successfully,” increasing his capital by one unit

In gambling practice, this system (doubling the stakes after a loss and dropping
out of the game after a win) is called a martingale. This is the origin of the mathe-
matical term “martingale.”

Remark. Whenp = g = %, the sequence X = (X, .%#,) with Xo = 0 is a martin-
gale and therefore

EX,=EXy=0 for every n>1.

We may therefore expect that this equation will be preserved if the instant n is
replaced by a random instant T. It will appear later (Theorem 1 in Sect.2) that
EX. = EXj in “typical” situations. Violations of this equation (as in the game
discussed above) arise in what we may describe as physically unrealizable situa-
tions, when either T or |X,,| takes values that are much too large. (Note that the game
discussed above would be physically unrealizable since it supposes an unbounded
time for playing and an unbounded initial capital for the player.)
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6. Definition 6. A stochastic sequence & = (&,,.%,) is a martingale difference if
E|¢| < oo forall n > 0 and

E(6ip1 | Z) =0 (P-as.). (10)

The connection between martingales and martingale differences is clear from
Definitions 1 and 6. That is, if X = (X, .%,) is a martingale, then £ = (&,,.%,) with
&0 = Xp and &, = AX,, n > 1 is a martingale difference. In turn, if £ = (§,,.%,) is
a martingale difference, then X = (X,,, %#,) with X,, = {o + - - - + &, is a martingale.

In agreement with this terminology, every sequence £ = (&,),>0 of independent
integrable random variables with E§, = 0 is a martingale difference (with .%, =

0{50, gla cee 7§n})~
7. The following theorem elucidates the structure of submartingales (or supermartin-
gales).

Theorem 2 (Doob). Let X = (X,,.%,) be a submartingale. Then there are a mar-
tingale m = (m,, .%,) and a predictable increasing sequence A = (A,, F,_1) such
that for every n > 0, Doob’ s decomposition

X, =m,+4A, (P-as.) an

holds. A decomposition of this kind is unique.

PROOF. Letus put my = Xy, Ag = 0, and

n—1
my=mo+ Y [Xj1 — E(X1 [ )], (12)
=0
n—1
Ay =) [EX [ F) - X)l. (13)

I
o

J
It is evident that m and A, defined in this way, have the required properties. In addi-

tion, let X,, = m/, + A, where m' = (m),, %#,) is a martingale and A’ = (A}, F,) is a
predictable increasing sequence. Then

A — AL = (A1 — Ay) + (M —my) — (my g —my),

and if we take conditional expectations on both sides, we find that (P-a.s.) A;, | —
Al = A1 — Ay But Ag = A = 0, and therefore A, = A}, and m, = m], (P-a.s.)
foralln > 0.

This completes the proof of the theorem.

O

It follows from (11) that the sequence A = (A, F,,—1) compensates X = (X,,, F,,)
so that it becomes a martingale. This observation justifies the following definition.

Definition 7. A predictable increasing sequence A = (A,,.%,—1) appearing in the
Doob decomposition (11) is called a compensator (of the submartingale X).
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The Doob decomposition plays a key role in the study of square-integrable mar-

tingales M = (M, .%,), i.e., martingales for which E M2 < oo, n > 0; this depends

on the observation that the stochastic sequence M? = (M?,.%,) is a submartingale.

According to Theorem 2, there is a martingale m = (m,,.%,) and a predictable
increasing sequence (M) = ((M),, .#,_1) such that

M? = my, + (M),. (14)

The sequence (M) is called the quadratic characteristic of M and, in many re-
spects, determines its structure and properties.
It follows from (13) that

(M), = > E[(AM))* | Z;1] (15)
j=1
and, for all [ <k,
E[(Mc — M))* | 7] = E[M} — M | 7)) = E[(M), — (M), | #]).  (16)
In particular, if My = 0 (P-a.s.), then
EM? = E(M);. (17)

It is useful to observe that if My = 0 and M, = & + -+ + &,, where (§,) is
a sequence of independent random variables with E¢; = 0 and E£? < oo, the
quadratic characteristic

(M), =EM? = Var&, +--- + Varg, (18)

is not random and, indeed, coincides with the variance.
IfX = (X,, %,) and Y = (Y, %,) are square-integrable martingales, we put

X, Y) =X +7Y), — (X=Y),]. (19)
Itis easily verified that (X, Y, — (X, Y),, .%,) is a martingale, and therefore, for / < k,
E[(X — X))(Ye — ¥i) | 7] = E[(X, V) — (X, V)| 7). (20)

In the case when X, = & + -+ &, ¥, = m1 + -+ + 1, where (§,) and
(1) are sequences of independent random variables with E§; = E#; = 0 and
E&? < 0o, En? < oo, the variable (X, Y), is given by

(X.¥), =3 Cov(&m).
i=1

The sequence (X, Y) = ((X,Y),, Fn_1), defined in (19), is often called the mu-
tual characteristic of the (square-integrable) martingales X and Y. It is easy to show
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(cf. (15)) that
(X,Y), =Y E[AXAY; | Fi_a).

i=1
In the theory of martingales, an important role is also played by the quadratic
covariation,

X, Y], = Z AX;AY;,

i=1
and the quadratic variation,

n

X, = > (ax)?,

i=1
which can be defined for all random sequences X = (X,,),>1 and ¥ = (¥,,),>1.

8. In connection with Theorem 1, it is natural to ask when a local martingale (and
hence a generalized martingale or a martingale transform) is in fact a martingale.

Theorem 3. (1) Suppose that a stochastic sequence X = (X, Fn)n>0 is a local
martingale (with Xo = 0 or, more generally, with E |Xy| < 00).

If EX, < oo,n > 0,0or EX; < co,n > 0, then X = (X, Fp)u>0 is a
martingale.

(2) Let X = (X, #1)o<n<n be a local martingale, N < oo, and either EXy, <
oo or EX]'\,Ir < 00. Then X = (X, F,)o<n<n Is a martingale.

PROOF. (1) Let us show that either of the conditions EX, < oo,n > 0, or EX; <
00, n > 0, implies that E |X,| < co,n > 0.
Indeed, let, for example, E X, < oo for all n > 0. Then, by the Fatou lemma,
Ext=E limkian+

nATE

< limkinf Ex’

nATy

= limkinf[E Xonr + EXonr ]
= EXo +liminf EX, < |EXo| + D> EX; < oo
k=0

Therefore E |X,| < 0o, n > 0.
To prove the martingale property E(X,,11 | -%,) = X,,, n > 0, let us observe that
for any Markov time T; we have

n+1

Xt vyanl < Z |Xil,
i=0

where
n+1

EZ |Xl‘ < oQ.
i=0
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Therefore, taking the limit as k — oo, Tx T oo (P-as.) in the equality
EX(nwt1)rt | #n) = Xunr, we obtain by Lebesgue’s dominated convergence
theorem that E(X,,+1 | %) = X, (P-a.s.).

(2) Assume, for example, that EX;, < oco. We will then show that EX,~ < oo
foralln < N.

Indeed, since a local martingale is a generalized martingale, we have X, =
E(Xut1|-Zn), where E(|X,41|| %) < oo (P-as.). Then, by Jensen’s inequal-
ity for conditional expectations (see Problem 5 in Sect.7, Chap.2, Vol. 1), X, <
E(X, 1 |-Z). Therefore EX,” <EX, | <EXy < oco.

Thus the desired martingale property of the local martingale X = (X,,, %, )o<n<n
follows from conclusion (1).

O

9. PROBLEMS

—_

Show that (2) and (3) are equivalent.

2. Let o and T be Markov times. Show that T+ o, TA o, and TV o are also Markov

times; in addition, if P(c < 1) = 1, then %, C %; (see Example 7 for the

definition of .%7).

Show that T and X, are .%;-measurable.

4. Let Y = (Y,,-%,) be a martingale (or submartingale), let V = (V,,.%,_1) be
a predictable sequence, and let (V - ), be integrable random variables, n > 0.
Show that V - Y is a martingale (or submartingale).

5. Let¥ O % 2O --- be a nonincreasing family of o-algebras, and let £ be an

integrable random variable. Show that (X,),>1 with X, = E(£|¥,) is a reversed

martingale, i.e.,

[ON]

E(Xn ‘XnJrlv Xn+2, .. ) = Xn+1 (P-a.s.)

for every n > 1.
6. Let &1, &s, . .. be independent random variables,

P(&=0)=P(&=2)=3 and Xan[fz*

i=1

Show that there does not exist an integrable random variable £ and a nondecreas-
ing family (.%,) of o-algebras such that X, = E(£|.%#,). This example shows
that not every martingale (X,,),>1 can be represented in the form (E(£ | .%,))n>1
(cf. Example 3 in Sect. 11, Chap. 1, Vol. 1).

7. (a) Let &1, &, ... be independent random variables with E |&,| < oo, EE, = 0,
n > 1. Show that for any k > 1 the sequence

Xr(Lk) = Z §i1 R gika n Z ka

1<i1<---<ix<n

is a martingale.
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(b) Let &1, &9, . .. be integrable random variables such that

bt tg

E(€H+1 ‘51,"'75}1) - n (: Xn)

Prove that the sequence X1, Xo, ... is a martingale.

8. Give an example of a martingale (X,,, .%,),>1 such that the family {X,,, n > 1}
is not uniformly integrable.

9. Let X = (X,),>0 be a Markov chain (Sect. 1, Chap. 8) with a countable state
space E = {i,j, ...} and transition probabilities p;. Let ©) = ¢)(x), x € E, be a
bounded function such that ) p;1(j) < A(i) for A > 0 and i € E. Show that

JE€E

the sequence (A™"9(X,,))n>0 is a supermartingale.

2. Preservation of Martingale Property Under a Random
Time Change

1.If X = (X,,, #,)n>0 is a martingale, then we have
EX,=EX, (D)

for every n > 1. Is this property preserved if the time n is replaced by a Markov
time t?7 Example 1 of the preceding section shows that, in general, the answer is no:
there exist a martingale X and a Markov time T (finite with probability 1) such that

EX: # EXo. 2)
The following basic theorem describes the “typical” situation, in which, in par-

ticular, E X; = E Xy. (We let X, = 0 on the set {7 = c0}.)

Theorem 1 (Doob). (a) Let X = (X, %y)n>0 be a submartingale, and © and o
finite (P-a.s.) stopping times for which E X; and E X, are defined (e.g., such that
E |X:| < 0o and E|X,| < c0). Assume that

m—r o0
Then
E(X:| %) > Xeno (P-as.) 4)

or, equivalently,
EX:| %,) > X, ({t>0}; P-as.).

(b) Let M = (M,, %,)n>0 be a martingale, and © and o finite (P-a.s.) stop-
ping times for which E M, and E M,, are defined (e.g., such that E |M| < oo and
E|M,| < 00). Assume that

lilginf E[|M,|I(t > m)] = 0. (5)
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Then
E(M.| %;) = Mipno (P-as.) (6)
or, equivalently,
EM.|Z;) =M, ({t>o0}; P-as.).
PROOF. (a) We must show that, for every A € .%,,

EXJ(A,T>0) > EX,I(A,T>0), (7)

where I(A,T > o) is the indicator function of the set A N {t > o}.
To prove (7), it suffices to show that for any n > 0

EX:I(A,t>0,0=n)>EX,I(A,T> 0,0 =n),
i.e., that
EX.I(B,t>n) >EX,I(A,t>n), B=AN{oc=n}.
Using the property BU {t > n} € .%, and the fact that the process X =
(X, %l),,zo is a submartingale, we find by iterating in n that for any m > n
EX,I(B,t>n)=EX,I(B,1=n)+EX,I(B,T > n)

<EX,I(B,1=n)+E[E(Xy41|.%,)1(B,T> n)]

(B’C—n)JrE[ w1 I(B,T>n+1)]
Bn<t<n+1)+EX,1I(B,t>n+1)
Bn<t<n+1)+EX,2I(B,T>n+2)
<. g EXJIB,n<t<m)+EX,I(B,T>m).

IN
m
>
/:/-\

Consequently,
EX.I(B,n<1<m)>EX,I(B,t1>n)—EX,I(B,T>m). ®)

By assumption, E X; is defined. Therefore the function Q(C) = E X, I(C) of Borel
sets C € Z(R) is countably additive (Subsection 8 in Sect. 6, Chap. 2, Vol. 1), and
hence there exists the limit lim,, oo EX:/(B,n < T < m). Therefore, since the
Markov time 7 is finite (P-a.s.), inequality (8) implies that

EX.I(B,T>n) > limsup[EX,,I(B,I >n) — EX,I(B,T> m)]
m— o0
=EX,I(B,t > n)—liminf EX,,I(B,T > m)
m—r o0
>EX,I(B,t>n)— lim EX}I(B,T> m)
m—ro0
= EX,I(B,T > n).

Thus, we have

EXI(B,c =n,t>n) > EX,I(B,oc =n,1>n)
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or
EX:I(A,t > 0,0 =n) > EX,I(A,T> 0,0 =n).

Hence, using the assumption P{o < oo} = 1 and the fact that the expectations E X;
and E X, are defined, we obtain the desired inequality (7).
(b) Let M = (M,,, #,)n>0 be a martingale satisfying (5). This condition implies
that
liminf E[M;} I(t > m)] = liminf E[M,, I(1 > m)] = 0.

m— o0 m—o0

Setting X = M and X = —M in (a) we find that (P-a.e.)
E[M‘E | yo’] Z M‘E/\U and E[_Mt l yo’] Z _M‘E/\U

with the latter inequality telling us that E[M; | #,| < M;p,. Hence E[M; | %#,] =
M, (P-a.s.), which is precisely equality (6).
O

Corollary 1. Let T and o be stopping times such that
P{c <t<N}=1
for some N. Then for a submartingale X we have
EXo <EX, <EX; <EXy,
and for a martingale M
EMy=EM, =EM, =EMy.

Corollary 2. Let X = (X, #,)n>0 be a submartingale. If the family of random
variables {X,,n > 0} is uniformly integrable (in particular, if |X,| < ¢ (P-a.s.),
n > 0, for some c), then for any finite (P-a.s.) stopping times T and o inequality (4)
holds, and if P{c < 1} =1, then

EXo <EX, <EX.

Moreover, if X = M is a martingale, then equality (6) holds, and if P{c <1} =1,
then
EMy=EM, =EX:..

For the proof, let us observe that the properties (3) and (5) follow from Lemma 2
in Subsection 5, Sect. 6, Chap. 2, Vol. 1, and the fact that P{t > m} — 0 asm — oc.

We will now show that the expectations E |X;| and E |X,| are finite. To prove
this, it suffices to show that

E |X:| < 3supE |Xy| ©))
N

(and similarly for o) because, due to inequality (16) of Sect. 6, Chap. 2, Vol. 1, the
assumption of uniform integrability of {X,,n > 0} implies that supy E |Xy| < o0;
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hence the required inequality E |X;| < oo (and, similarly, E |X,| < 00). will follow
from (9).
Corollary 1 applied to the bounded stopping time Ty = T A N implies

EX, <EX.,.

Therefore
E X, | =2EX;. —EX,, <2EX] —EX,. (10)

The sequence X* = (X7, .%,),>0 is a submartingale (see Example 5 in Sect. 1);
hence

EX{ =) E[X Ity =))] + E[Xy I(1> N)]

<

- 114

Il
=)

E[Xy I(tv =j)] + E[X§ I(t > N)] = EXy < E|Xy| < supE |X,],
] m

which, combined with the inequality in (10), yields

E|X:,| < 3supE |X,].
m

Hence we obtain by Fatou’s lemma (Theorem 2 (a) in Sect. 6, Chap. 2, Vol. 1)

E|X:| = Elim |X;,| = Eliminf [X;,| <liminf E |X;,| < 3sup E |Xu|,
N N N N

which proves (9).

Remark 1. The martingale X = (X,,,.%,)n>0 (With p = ¢ = 1/2) in Example 8 of
the previous section was shown to satisfy

EXulIt>m)=2"-1)P{t>m=02"-1)-27" =1, m— oo.

Therefore condition (5) fails here. It is of interest to notice that the property (6) fails
here as well since, as was shown in that example, there is a stopping time T such that
EX:. = 1 > Xy = 0. In this sense, condition (5) (together with the condition that
E X, and E X; are defined) is not only sufficient for (6), but also “almost necessary.”

2. The following proposition, which we shall deduce from Theorem 1, is often useful
in applications.

Theorem 2. Let X = (X,,) be a martingale (or submartingale) and T a stopping
time (with respect to (FX), where X = o{Xo,...,Xy)). Suppose that ET < oo
and that for some n > 0 and some constant C

E{|X,11 — X.|| ZX} < C ({t>n}; P-as.).
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Then
E|X:| < o0

and
EX: = EX,. (1)
(=)
PROOF. We first verify that the stopping time T has the properties
E|X:| <oo and liminf / |X,|dP =0,
n—o0o
{t>n}

which by Theorem 1 imply (11).
Let
Yo=[Xol,  Y=[X-Xl, j>1

Then |X;| < Z} o Y; and

E|XT|<E<Z ):/szjyjdpzi/ ZYdP

—0 ‘En}jo

f;z;/{ Vdp = 22/1 vap- Z/@}

T=n} Jj=0 n=j

The set {1 > j} = Q\{t <j} € #*,, j > 1. Therefore

{t=j} {t>j}

for j > 1; and hence

T oo
E [Xq| gE(ZY,) <E[Xo|+CY P{t>j} =E|Xo| + CET< c0. (12)

J=0 J=1

Moreover, if T > n, then

<<
IN
o<

and therefore
T

/ |Xn|dP§/ ZYidP.
{t>n} {t>n} =0

Hence, since (by (12)) EZ oY <ocand {t > n} | &, n — oo, the dominated
convergence theorem ylelds
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T

liminf/ |Xn|dP§liminf/ Y. dP = 0.
n—00 {1:>n} n—00 {T>n} ; J

Hence the hypotheses of Theorem 1 are satisfied, and (11) follows, as required.
This completes the proof of the theorem.
O

3. Here we present some applications of the preceding theorems.

Theorem 3 (Wald’s Identities). Let &1,&2,... be independent identically dis-
tributed random variables with E |;| < oo, and T a stopping time (with respect to
FE, where F& = o{&1,...,&},7> 1), and ET < 0o. Then

EG+---+&) =E&-Et (13)
If also E§i2 < 00, then
E{(&1+---+&) —tE&)Y? = Varg, -En (14)

PROOF. Let X = (X, #8),>1, where X, = (& + -+ &,) — nE&;. Itis clear that
X is a martingale with

EHXnJrl _an |X17-~-aXn] = E[|€n+1 - E§1| |§17---a§n]
=E|{1 —E&GI S 2E(G] < oo

Therefore, by Theorem 2, EX; = E Xy = 0, and (13) is established.
We will give three proofs of Wald’s second identity (14).
The first proof. Letn; = & — E&;, S, = n1 + - - - + 1,. We must show that

ES?=E#»? Et.
Put t(n) = T A n (= min(t, n)).

Since
Zm +2 >y,

1<i<j<n

the sequence (S2 — Z n?, F5)u>1 is a martingale with zero expectation.

By Corollary 1 we have
t(n)

i=1

and by Wald’s first identity (13)

()
EY n’ =En;-Et(n),
i=1

so that ES7,) = Enf - Et(n).
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In a similar way we obtain that
E(Se(n) = Stm)® = Eni - E(v(n) — 1(m)) — 0

as m,n — oo, since ET < oo by assumption. Hence the sequence {Sy(,)}.>1 is
fundamental (or a Cauchy sequence) in L? (see Subsection 5 of Sect. 10, Chap. 2,
Vol. 1), so, by Theorem 7 of Sect. 10, Chap. 2, Vol. 1, there is a random variable S
such that E(Sy(,) — $)* — 0, n — oc. This implies (Problem 1 in Sect. 11, Chap. 2,
Vol. 1) that ES2 )~ ES2, n — oco. As was shown earlier, ESf(n) = En?-E1(n);
therefore, lettmg n — oo, we obtain that ES? = E7? - Et.

It remains to identify the random variable S. Let us observe that with probability 1
there is a subsequence {n'} C {n} such that both S;(,,y — S and 7(n") — 7. But
then it is clear that S;(,/y — S: With probability 1. Therefore S and S; are the same
almost surely; hence E S2 = E#? - E 1, which was to be proved.

The second proof. By Fatou’s lemma (Theorem 2 (a), Sect. 6, Chap. 2, Vol. 1), we
obtain from the equality E Sf(n = En? - E1(n) established above that

ES? = Ehmme(n)<hm1nfES ”)—Enl Et

The required equality E S? = En? - E T will be proved if we show that
ESy) <ES;

for any n > 1.
Notice, using Wald’s first identity (13), that

ElSel =En + -+ <E(m|+-+|m]) =E|m| - E1 < o,
SO

ElSull(t>n) =Efn + - +n[1(t>n) SE(jm[+ -+ ml) I(t>n)
<E(m|+- -+ |mDI(t>n)—0 as n— oo.
Applying Theorem 1 to the submartingale (|S,|, #5),>1), we find that, on the

set {T > n},
E(1S:||.Z5) > ISa| (P-as.).

Hence, by Jensen’s inequality for conditional expectations (Problem 5, Sect. 7,
Chap. 2, Vol. 1), we obtain that on the set {t > n}

E(S?|.75)>S. =S5, (P-as.).

And on the complementary set {t < n} we have E(S7 | #;) = §7 = §7,. Thus
(P-a.s.)
E(S7|.75) > 3

and hence ES? > E Sf(n), as required.
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The third proof. We see from the first proof that (S — >0 n?, . F5)u>1 is a
martingale and
E s? )= En?-E1(n)

(n

for 1(n) = t A n. Since Et(n) — Et, we only have to show that ES?,, — ES;.
For that, it suffices to establish that

E sgp Sf(n) < 00,
because the required convergence will then follow by Lebesgue’s dominated con-
vergence theorem (Theorem 3, Sect. 6, Chap. 2, Vol. 1).

For the proof of this inequality we will use the “maximal inequality” (13) to be
given in the next Sect. 3. This inequality applied to the martingale (Sq), ﬁkf)kzl
yields

E |: sup Ss(k):l S 4 ES?(H) S 4sup ES,%(H)

1<k<n n
Hence, using the monotone convergence theorem (Theorem 1 of Sect. 6, Chap. 2,
Vol. 1), we obtain that
2 2
E i1>1;1) Sty <4 stip ESin-

But

E s? )= En? Et(n) <En? Et< oo

t(n
Therefore
EsupSf(n) <4Eni E1< oo,

as was to be shown.
O

Corollary. Let £1,&s, ... be independent identically distributed random variables
with
P(gl:]_):P(fl:—l):%7 Sn:€1+...+£n’

and t = inf{n > 1: S, = 1}. Then P{1 < oo} = 1 (see, for example, (20) in
Sect. 9, Chap. 1, Vol. 1) and therefore P(S; = 1) = 1, ES; = 1. Hence it follows
from (13) that E1 = co.

Theorem 4 (Wald’s Fundamental Identity). Let &1,&o, ... be a sequence of inde-
pendent identically distributed random variables, S, = & + -+ + &, n > 1. Let
o(t) = Ee'*1, t € R, and let ¢(ty) exist for some ty # 0 and p(ty) > 1.

If T is a stopping time (with respect to (F5), F& = a{&1,...,6,},1 > 1), such
that |S,| < C ({t > n};P-a.s.) and E1 < o0, then

E [((:(t::))r} =1 (15)
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PROOF. Take
Y, = €% (p(to)) .

Then Y = (Y,, %#5),>1 is a martingale with E ¥, = 1 and, on the set {1 > n},
e!08n+1

) ‘1‘ 66}
=Y, -E|e®(p(tg)) ' —1] < C< oo (P-as.),

E{|Yit1 — Yul| Y1,..., Y} = YnE{

where C is a constant. Therefore Theorem 2 is applicable, and (15) follows since
EY, =1.

This completes the proof.

O

EXAMPLE 1. This example will let us illustrate the use of the preceding examples to
find the probabilities of ruin and mean duration in games (Sect. 9, Chap. 1, Vol. 1).

Let &1,&5, ... be a sequence of independent Bernoulli random variables with
P(gl: ]-) =D P(gt: _1) =q,ptq=1, S:§1+"'+£n»and

tT=min{n >1: S, =BorA}, (16)

where (—A) and B are positive integers.

It follows from (20) (Sect. 9, Chap. 1, Vol. 1) that P(t < oo) = 1 and E1 < oc.
Then, if « = P(S; = A), 8 =P(S; =B),wehavea+ 8 = 1.1fp = g = 3, we
obtain from (13)

0=ES;=aA+ B,
whence B Al
o=—", = .
B+ |A p B+ A

Applying (14), we obtain
Et=ES? = aA® + 3B = |AB|.

However, if p # g, then we find, by considering the martingale ((g/p)>),>1,

that
St S1
(s)"-<(s)' -
p p ’
A B
a(‘I> +/3(‘1> .y
p P

Together with the equation a 4 5 = 1, this yields

and therefore

a7)
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Finally, since ES; = (p — g) E 1, we find

ES: oA+ B
p—4a p—q’
where « and /3 are defined by (17).

Et=

1

EXAMPLE 2. In the example considered above, let p = g = 5. Let us show that for

T defined in (16) and every Ain 0 < A < 7/(B + |A|)

cos ()\%)

]

E(cos\)™" = m. (18)
2
For this purpose we consider the martingale X = (X,,, . %5),>0 with
X, = (cos )" cos ()\ (S,, — BJQFA>> (19)
and Sy = 0. It is clear that
EX, = EXy = cos ()\B;A) . (20)

Let us show that the family {X,..} is uniformly integrable. For this purpose we
observe that, by Corollary 1 to Theorem 1 for 0 < A < w/(B + |A|),

EXo = EX,a: = E(cos )\)*("m) cos <)\ (S,,/\T — B;A>)

> E(cos \) ™" cos <)\B2A> .

Therefore, by (20),
E(cos \)~("\V <

and consequently, by Fatou’s lemma,

E(cos\) 7T < 2D

Consequently, by (19),
[Xunt] < (cosA) 7

With (21), this establishes the uniform integrability of the family {X,:}. Then, by
Corollary 2 to Theorem 1,
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cos <)\B;A) =EXo=EX; = E(cos\) " cos <)\B;A> ,

from which the required equality (18) follows.

4. As an application of Wald’s identity (13), we will give the proof of the “ele-
mentary theorem” of renewal theory: If N = (N;),>¢ is a renewal process (N, =
S (T, <1),T, =01+ +0, where 01,09, ... is a sequence of independent
identically distributed random variables (Subsection 4, Sect. 9, Chap. 2, Vol. 1)) and
p = E o1 < o0, then the renewal function m(z) = E N, satisfies

@ — l, t — o0. 22)
! H

(Recall that the process N, = (N;);>o itself obeys the strong law of large numbers:

N, 1
L =~ (P-as), t— o0
! H
see Example 4 in Sect. 3, Chap. 4.)
To prove (22), we will show that

t 1 t 1
lim inf M > — and limsup m < —. (23)
t—oo  f o 1—00 t I
To this end we notice that
Ty, <t<Ty41, t>0. 24)

Since forany n > 1

k=1

{N,+1§n}:{Nfgn—l}:{Nt<n}:{Tn>t}={zn:o—k>t}e,%,

where .7, is the o-algebra generated by o1, . . . , 0, we have that N, + 1 (but not N,)
for any fixed ¢ > 0 is a Markov time. Then Wald’s identity (13) implies that

E TN,+1 = /,L[m(l‘) + 1] 25)
Hence we see from the right inequality in (24) that ¢ < u[m(r) + 1], i.e.,

t 1 1
my 1L (26)
t noot
whence, letting t — oo, we obtain the first inequality in (23).

Next, the left inequality in (24) implies that t > E Ty,. Since Ty, +1 = Ty, +0n,+1,
we have

t > ETy, = E(Ty41 — on+1) = pfm(t) + 1] — Eon41. (27)



130 7 Martingales

If we assume that the variables o; are bounded from above (o; < c¢), then (27)
implies that ¢ > u[m(t) + 1] — ¢, and hence

i) _
0

+

%.C*“. (28)

I

==

Then the second inequality in (23) would follow.
To discard the restriction o; < ¢, i > 1, we introduce, for some ¢ > 0, the
variables
of =oi(o; <c)+clo; > c)

and define the related renewal process N© = (Nf),;>o with N& = >~ (T < 1),
T: = 0§ +---+ o5 Since of < 0,1 > 1, we have Nf > N;; hence

m°(t) = EN; > EN, = m(1).

Then we see from (28) that

c _,C
(0 om0 11 ey
t — t T opu t ue
where (¢ = E of.
Therefore
(0 _ 1
limsup —= < —.
t—>00 t ue

Letting now ¢ — oo and using that 4 — u, we obtain the required second inequal-
ity in (23).
Thus (22) is established.

Remark. For more general results of renewal theory see, for example, [10, Chap.
9], [25, Chap. 13].
5. PROBLEMS

1. Show that
Elxr‘ < lim E|XN|
N—oo

for any martingale or nonnegative submartingale X = (X, .-%,),>0 and any finite
(P-a.s.) stopping time T. (Compare with inequality E [X;| < 3supy E |Xy| in
Corollary 2 to Theorem 1.)
2. Let X = (X, %,)n>0 be a square-integrable martingale, E Xy, = 0, T a stopping
time, and
lim inf X2dP =0.

n—oo {‘C>I’l}

Show that
T
EX; = E(X): <: E> (ij>2>,
j=0

where AXy = Xo, AX; =X; — X;_1,j > 1.
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3.

Let X = (X,, %.)n>0 be a supermartingale such that X, > E(¢|.%,) (P-as.),
n > 0, where E || < oo. Show that for stopping times ¢ and T with P{oc < 1} =
1 the following relation holds:

X, > E(X:| %#,) (P-as.).

Let &1, &9, . .. be a sequence of independent identically distributed random vari-
ables with P(¢; = 1) = P(& = —1) = 1, a and b positive numbers, b > a,

X =ad M6 =+1) b MG = -
k=1 k=1

and
t=min{n>1:X, <-r}, r>0.

Show that E e** < oo for A < « and E e = oo for A > «q, where

b ) 2b n a 1 2a
oy = o 0 .
0 a+b ga—i—b a+b ga—i—b
Let &1,&s, ... be a sequence of independent random variables with E&; = 0,

Varé = 02, S, = & + - + &, FF = o{&,...,&]}. Prove the following
generahzatlons of Wald’s identities (13) and (14): If E Z _,E |&] < oo, then

ES,=0; 1sz:]:1E§]2 < 00, then

Es? = EZgQ EZU (29)

Let X = (X,,.Z),>1 be a square-integrable martingale and T a stopping time.
Establish the inequality

EX? < Ei(AXnF
n=1
Show that if
h,{ﬂi{if E(X?I(t>n)) <oco or lanig}f E(|X,|I(t>n)) =0,
then EXZ =E> ' (AX,)2

Let X = (X, %#,)n>1 be a submartingale and T; < T2 < ... stopping times such
that EX; are defined and

liminf E(XI(t,, >n)) =0, m> 1.

n— 00

Prove that the sequence (Xx,, %1, )m>1 is @ submartingale. (As usual, %, =

T

{AcF  An{t,=jt €%, j>1})
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3. Fundamental Inequalities

1. Let X = (X, .Z,)n>0 be a stochastic sequence,

X =max X, X, = €X', p>0.
Sjsn

In Theorems 1-3 below, we present Doob’s fundamental maximal inequalities for
probabilities and maximal inequalities in L” for submartingales, supermartingales,
and martingales.

Theorem 1. I. Let X = (X,,, % )n>0 be a submartingale. Then for all X > 0
/\P{r?gxxsz} <E {X,jl(r{lgxxsz)} <EX}, (1)
. _ . _ _ + _
AP{I%EXk < )\} <E [X,ZI(I%EXk > )\)} EXo <EX' —EXo, ()
> < .
AP { max X,] > /\} < 3maxE |x| 3)

II. Let Y = (Y, %n)n>0 be a supermartingale. Then for all X > 0

)\P{Iilgf(YkZ)\} < EYO—E[YHI(r?g;(Yk<)\)} <EYy+EY,, 4

AP {min¥, < -2} < —E[v,1(minvi < -))] <E¥,. 5
AP {max|¥i| > A} < 3maxE|v. ©)

II. Let Y = (Y, Zn)n>0 be a nonnegative supermartingale. Then for all X > 0

AP{I@(Y@A}SEYO, %
AP{supysz}gEyn. )
k>n

Theorem 2. Let X = (X,,, #,)n>0 be a nonnegative submartingale. Then for p > 1
we have the following inequalities:

ifp>1,
p
1Xull, < 1X5 1, < o1 (1% 15 )

ifp=1,
" e
[1Xalls < [1X5 111 < Py 1{1 + |1 X, log ™ X, |1} (10)

Theorem 3. Let X = (X,,, F,)n>0 be a martingale, \ > 0 and p > 1. Then

E|X,["
N b

P{max|Xk| > /\} <
k<n
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andifp > 1,
* p
||Xn||p < HXn ||p < pleXan (12)

In particular, ifp = 2,

E X, [2

P {max ) = A} < =5, (13)
2

E [T?ka} < 4EX?. (14)

PROOF OF THEOREM 1. Since a submartingale with the opposite sign is a super-
martingale, (1)-(3) follow from (4)—(6). Therefore we consider the case of a super-
martingale ¥ = (Y, %#,)n>o0.

Let us set T = min{k < n: ¥; > A} with T = n if maxs<, ¥x < A. Then, by (6),
Sect. 2,

EY,>EY,—E [YT; max Yy > /\} +E [Yr; max ¥ < /\]
> )\P{maxYk > )\} +E {Yn; Iil<aXYk < )\],
which proves (4).
Now let us set 0 = min{k < n: ¥; < —A} and take o = n if miny<, ¥, > —A\.

Again, by (6), Sect. 2,

Ey,<EY,—E {YT; min Y, < —)\} +E [YT; min ¥, > —)\}
k<n k<n

< —)\P{mlnYk < /\} +E [Yn; min Y > —)\}.
k< k<n
Hence
)\P{minYk < —A} <_E [Y,,; min ¥; < —A] <EY;,
k<n k<n
which proves (5).

To prove (6), we notice that Y~ = (—Y)™ is a submartingale. Then, by (4) and
(1),

)\P{rlrcl<a§<|Yk|2)\}<)\P{maxY >)\}+)\P{maxY > A}
—)\P{maxYk>>\}+)\P{maxY > A}

< EYQ+2EYn §31’]£1<E%XE‘Y1€‘

Inequality (7) follows from (4).
To prove (8), we set v = min{k > n: ¥; > A}, taking v = oo if ¥; < A for all
k > n.Now let n < N < oo. Then, by (6), Sect. 2,
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EY, > EYW\N > E[Y,YANI('y < N)] > AP{y < N},
from which, as N — oo,

EYnZ/\P{7<oo}=)\P{Squk2)\}.
k>n
O

PROOF OF THEOREM 2. The first inequalities in (9) and (10) are evident.
To prove the second inequality in (9), we first suppose that

1% llp < o0 (15)
and use the fact that, for every nonnegative random variable £ and for r > 0,
o0
E¢ = r/ P (E > 1) dt (16)
0

(see (69) in Sect. 6, Chap. 2, Vol. 1). Then we obtain, by (1) and Fubini’s theorem,
that forp > 1

E(X;)P :p/ t17*1 P{X;i: > f} dt Sp/ tpf2 (/ XndP> dt
0 0 x;>1
:p/ =2 U X, I{X* >t}dP} dt
0 Q

o
=p/Xn
Q

" 2dr| dP = Ll E [X,(x;)"]. 17)
Hence, by Holder’s inequality,

0

EX)” < qllXaullp - 1067 g = allXall,[ECG 19, (18)
where g =p/(p —1).
If (15) is satisfied, we immediately obtain the second inequality in (9) from (18).

However, if (15) is not satisfied, we proceed as follows. In (17), instead of X,
we consider (X' A L), where L is a constant. Then we obtain

E(X; ALY < qEX.(X; AL < qlIXll,[E(X; A LYY,
from which it follows, by the inequality E(X* A L)? < IP < oo, that
E(X, AL < ¢"EX] = ¢"[[ X},

and therefore
E(X)Y = Llim E(XI ALY < qp||X,,||£.
—00
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We now prove the second inequality in (10). Again applying (1), we obtain

EX: —1<EX:-1" :/ P{X} —1>t}dt
0

<[ o) xap
0 ].+t {X:Zl-‘rl}

Since, for arbitrary @ > 0 and b > 0,

X1 gy
dt:EXn/ —— =EX,logX,.
0 141+

alogh < alogt a+ be !, (19)

we have
EX'—1<EX,logX’ <EX,log" X, +e 'EX".

If EX < oo, we immediately obtain the second inequality (10).
However, if EX* = oo, we proceed, as above, by replacing X7 with X' A L.
This proves the theorem. O
PROOF OF THEOREM 3. The proof follows from the remark that |X|P, p > 1, is
a nonnegative submartingale (if E |X,|’ < oo, n > 0), and from inequalities (1)
and (9).
O
Corollary of Theorem 3. Let X, = §o+- - - +&,, n > 0, where (§)i>0 is a sequence
of independent random variables with E & = 0 and E £ < oo. Then inequality (13)
becomes Kolmogorov’s inequality (Sect. 2, Chap. 4).

2. Let X = (X, %,) be a nonnegative submartingale and
Xn =M n+ Am

its Doob decomposition. Then, since E M,, = 0, it follows from (1) that

P{X;>e} < EA”.
9

Theorem 4, below, shows that this inequality is valid, not only for submartingales,
but also for the wider class of sequences that have the property of domination in the
following sense.

Definition. Let X = (X,,.%#,) be a nonnegative stochastic sequence and A =
(A, Z,—-1) an increasing predictable sequence. We shall say that X is dominated
by sequence A if

EX, < EA, (20)

for every stopping time 7.

Theorem 4. If X = (X,,,.%,) is a nonnegative stochastic sequence dominated by an
increasing predictable sequence A = (A,, %,_1), then for A\ > 0, a > 0, and any
stopping time T,
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EA,
A Y
1
P{X; > A} < { E(4: A a) +P(A: > a),

P{X: >} <

* 2_p e
il < (F22) Iad 0<p <t

PROOF. We set
op =min{j <TAR: X; > A},
taking 0, = T An, if {-} = &. Then
EA. > EA,, >EX,, > / X5, dP > AP{X},, > A},
{XEnn>A}

from which )
P{X:An > )\} S X EAT7

and we obtain (21) by Fatou’s lemma.
For the proof of (22), we introduce the time

v = min{j: Aj11 > af,
setting v = oo if {-} = &. Then

P{X! > A} = P{X’ > A\, A, <a} + P{X} >\, A; > a)
< P{I{A1<H}X: > )\} + P{AT > a}

1
< P{X;\, > A} +P{4: > a} <  Edoy, + P4 > a)

1
S X E(AT AN Cl) + P(AT 2 Cl),

where we used (21) and the inequality /14 <o} X; < X{a,-

Hﬁm=aﬁV=A Hmwzgm:A P{X* > M7} dr

o0 oo
g/ I E[AT/\ll/p]dl—f-/ P{A? >t} dt
0 0
:E/ m+E/ (At~ /Py dt + EAL = ——CEAL.
0 A 1-p

This completes the proof.
O

Finally, by (22),

2

(22)

(23)

Remark. Let us suppose that the hypotheses of Theorem 4 are satisfied, except that
the sequence A = (A,,.%,),>0 is not necessarily predictable but has the property

that for some positive constant ¢
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P {sup|AAk| < c} =1,
>1
where AA; = Ay — A;_1. Then the following inequality is satisfied (cf. (22)):
1
P{X: >} < 3 E[A: A (a + ¢)] + P{A; > a}. 24)

The proof is analogous to that of (22). We have only to replace the time v =
min{j: Aj41 > a} with vy = min{j: A; > a} and notice that A, < a + c.

Corollary. Let the sequences X = (X*, ) and A* = (AX, ZK), n >0, k > 1,
satisfy the hypotheses of Theorem 4 or the remark. Also, let (Tk)k21 be a sequence

P
of stopping times (with respect to F* = (F¥)) and A%, 0. Then (X*): —0.

3. In this subsection we present (without proofs, but with applications) a num-
ber of significant inequalities for martingales. These generalize the inequalities of
Khinchin and of Marcinkiewicz and Zygmund for sums of independent random
variables stated below.

Khinchin’s Inequalities. Ler &1,&5, ... be independent identically distributed
Bernoulli random variables with P(§; = 1) = P(§ = —1) = %, and let (¢cy)n>1 be
a sequence of numbers.

Then for every p, 0 < p < oo, there are universal constants A, and B, (indepen-

dent of (c,)) such that

n 1/2
M5

=1

n

> g

=1

n 1/2
< Bp(ch) (25)
p

=1

foreveryn > 1.

Marcinkiewicz and Zygmund’s Inequalities. If &1,&o, . .. is a sequence of inde-
pendent integrable random variables with E & = 0, then for p > 1 there are univer-
sal constants A, and B), (independent of (,)) such that

n 1/2 n n 1/2
w(ze) | =|xze] <=)(2e) )
i= j= J=

<
p

<B,
P

p

foreveryn > 1.

The sequences X = (X,) with X, = >3, ¢;§ and X, = 37 & in (25) and
(26) are martingales involving independent §;. It is natural to ask whether these
inequalities can be extended to arbitrary martingales.

The first result in this direction was obtained by Burkholder.
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Burkholder’s Inequalities. If X = (X, %#,) is a martingale, then for every p > 1
there are universal constants A, and B, (independent of X) such that

AplV IXTally < 1Xullp < Bpllv/[X]allp, @7

for every n > 1, where [X|, is the quadratic variation of X,,:

n

Xl =Y _(AX)?, Xo =0, (28)

j=1
The constants A, and B, can be taken to have the values
Ay =[18p°2/(p = D)7, B, =18p"2/(p—1)"/2.
It follows from (27), using (12), that

ApllV XDl < 11X, < By IV [Xallp, (29)

where
Ay =[18p"2/(p— 17", By =18p"2/(p— 1)/

Burkholder’s inequalities (27) hold for p > 1, whereas the Marcinkiewicz—
Zygmund inequalities (26) also hold when p = 1. What can we say about the
validity of (27) for p = 1? It turns out that a direct generalization to p = 1 is
impossible, as the following example shows.

EXAMPLE. Let &, &,,. .. be independent Bernoulli random variables with P(&; =
1) =P(&=—1) =1, and let

nAT

X =),
j=1
where

T:min{n>1: ijzl}.
i=1

The sequence X = (X, .Z¢) is a martingale, with

X, = E|X,| =2EX} =2, n— oo

But
TAR 1/2
||\/[X]n||1=E\/[X]n:E<Zl> L E VT oo,

Consequently, the first inequality in (27) fails.
It turns out that when p = 1, we must generalize (29) rather than (27) (which is
equivalent when p > 1).



3 Fundamental Inequalities 139

Davis’ Inequality. If X = (X, %#,) is a martingale, there are universal constants
Aand B, 0 < A < B < o0, such that

AV IXally < [1X 1 < BlIV[X]all1 (30)

ie.,

2 < <
z;(Ax) E Lrg}a<Xn|X ] BE Z AX;)?
=

Corollary 1. Let &1,&o, ... be independent identically distributed random vari-
ables, S, = & + -+ & IfE|&] < oo and E& = 0, then according to Wald’s
inequality (13) (Sect.2), we have

ES; =0 31)

for every stopping time T (with respect to (F5)) for which ET < 0.
If we assume additionally that E |1|" < oo, where 1 < r < 2, then the condition
Et'/" < oo is sufficient for (31).

For the proof, we set T, = T A n, Y = sup, |S;,| and let m = [¢'] (integral part of
1) for t > 0. By Corollary 1 to Theorem 1 (Sect.2), we have E S;, = 0. Therefore
a sufficient condition for E S; = 0 is (by the dominated convergence theorem) that
Esup,, |S,| < o0.

Using (1) and (27), we obtain

PY>t)=Pr>t,Y>0)+Pr<t, Y>1)
>
(1> )+P{rgax|ST| t}

(T>1)+1t"E|S,|"

IN

P
P

IN

A

/2
<P(t>¢)+1"BE (Zg )
<P(t>1)+1"B. EZ &1

Notice that (with Z5 = {@, Q})

T

ED IGM=EY IG <)l
j=1

=1

_ Z EE[( < tw)lgl | F51)

Tin

Z Efl¢l" ‘yg EZEKJ'V:MVETW
=1 j=1
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where p, = E [£;|". Consequently,
PY>t<P(t>¢)++"'BuE1,

=P(t>1)+But™" [m P(t > 1) +/ ‘EdP}
{t<r}
<(1+Bu)P(t>1)+ Blut ’/ TdP
{t<r}
and therefore
EY:/ P(Y>1t)dr < (14 Blu,) Eﬂ:l/’+B’ur/ t"[/ rdP}dr
0 0 {t<t}
= (14 Blyu,)ETY/" +B’ur/ [/ trdt} dP
Q Ti/r
By,
— (1 + Brpr + r’_/Ll) Et!/" < oc.

Corollary 2. Let M = (M,) be a martingale with E |M,|* < oo for some r > 1
and such that (with My = 0)

= E|AM,|*
n=1
Then (cf. Theorem 2 in Sect. 3, Chap. 4) we have the strong law of large numbers:

%—>0 (P-a.s.), n— . (33)
n

When r = 1, the proof follows the same lines as the proof of Theorem 2 in
Sect. 3, Chap. 4. In fact, let
. AM,
m=y 2

k=1

Then
M, _ M == Zkﬁmk

n

and, by Kronecker’s lemma (Sect. 3, Chap. 4), a sufficient condition for the limit
relation (P-a.s.)

1 n

,E kAmy; — 0, n— oo,
n

k=1

is that the limit lim,, m,, exists and is finite (P-a.s.), which in turn (Theorems 1 and
4 in Sect. 10, Chap. 2, Vol. 1) is true if and only if

P{supmn+kmn| Zs} —0, n— oo 34)
k>1
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By (1),

(AM,
P {sup | Mgk — my| > 5} < 5_22%.
k=n

Hence the required result follows from (32) and (34).
Now let 7 > 1. Then statement (33) is equivalent (Theorem 1 of Sect. 10, Chap. 2,
Vol. 1) to the statement that

M;
62’P{Sup|1|>5}—>0, n— oo, (35)

j>n

for every € > 0. By inequality (52) of Problem 1,

M. 2r
6”P{bup M| >5} =2 lim P{max | é| 252’}
J

i>n m— 00 n<j<m ]
*E\M >+ Z E(n*" — M1 [*).
J>n+1

It follows from Kronecker’s lemma that

lim E|M,|* =

n—oo }’l2
Hence, to prove (35), we need only prove that
1
ZEEUMJ'\%— |M; 1) < oc. (36)
j=2

We have

N
Z [E M — E M1 |*]

N

1 E |My|?

= Z{ J} E i1+ S
j=2

By Burkholder’s inequality (27) and Holder’s inequality,

J
<BY |AM
i=1

j r

> (Am;)?

i=1

E |M[* < BYE

Hence

IN<NiB2r 1 1 r 1ZE|AM|2rM
= 2r ]2r (]+1)2r — N2r



142 7 Martingales

N—1 j )

i ) E My

<C E ],ﬁ E E|AM;| Nz
=2 i—1

N
E|AM,|%
<oy BN o,
==

(Cy are constants). By (32), this establishes (36).

4. The sequence of random variables {X, },>1 has a limit lim X,, (finite or infinite)
with probability 1 if and only if the number of “oscillations between two arbitrary
rational numbers a and b, a < b” is finite with probability 1. In what follows, Theo-
rem 5 provides an upper bound for the number of “oscillations” for submartingales.
In the next section, this will be applied to prove the fundamental result on their
convergence.

Let us choose two numbers a and b, a < b, and define the following times in
terms of the stochastic sequence X = (X,,,.%,):

19 = 0,
1, = min{n > 0: X, < a},
To = min{n > 11: X, > b},

Tom—1 = min{n > Tom—o: X, < a},

Tom = min{n > To,_1: X, > b},

taking T, = oo if the corresponding set {-} is empty.
In addition, for each n > 1 we define the random variables

_ 0, if T > n,
Bu(a, b) = {max{m: Tom <n} if 12 <n.
In words, f,(a,b) is the number of upcrossings of |a,b] by the sequence
X1, X,

Theorem 5 (Doob). Let X = (X,,, #,,)n>1 be a submartingale. Then, for every n >
]-’
E[X, — a]T

<
EB}l(a7b)— b—a

(37)
PROOF. The number of intersections of X = (X,,.%,) with [a, b] is equal to the
number of intersections of the nonnegative submartingale X* = ((X, — a)™,.%,)
with [0, b — a]. Hence it is sufficient to suppose that X is nonnegative with a = 0

and show that

E6,(0.0) < T (38)
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SetXo =0, %, ={2,Q},and fori =1,2,...,let

)1 if 1, < i < Ty41 for some odd m,
vi 0 ift, <i<1,s for some even m.

It is easily seen that
bB,(0,b) < Z @ilXi — Xi—1]
i=1

and

{ei=1}= [l <iN\{ta1 <] € Fiv.

oddm
Therefore

n

bEB,(0.D) SEY @ilXi—Xia] = Z/ (X; — X;_1)dP
i=1 i=1 7 {ei=1}
:Z/ EXi —Xi—1|-Fi-1)dP
i=1 7 {wi=1}

_ Z/ [E(X;| Fi1) — Xi—1]dP

i—1 J{wi=1}
< Z/ E(X|Fi1) — Xi1]dP = EX,,
i=1 7%
which establishes (38).

5. In this subsection we discuss some of the simplest inequalities for the probabilities
of large deviations for square-integrable martingales.

Let M = (M,, #,)n>0 be a square-integrable martingale with quadratic char-
acteristic (M) = ((M),, #,_1), setting My = 0. If we apply inequality (22) to
X, =M?2, A, = (M),, we find that fora > 0 and b > 0

P {max |My| > an} =P {maxM,? > (an)2}
k<n k<n

< 1
~ (an)?

E[(M), A (bn)] + P{(M), > an}.  (39)

In fact, at least in the case where |AM,| < C for all n and w € {2, this inequality
can be substantially improved using the ideas explained in Sect.5 of Chap.4 for
estimating the probabilities of large deviations for sums of independent identically
distributed random variables.

Let us recall that in Sect. 5, Chap. 4, when we introduced the corresponding in-
equalities, the essential point was to use the property that the sequence

5/ loN)]", Zaws1, T =01, ..., &b (40)
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formed a nonnegative martingale, to which we could apply inequality (8). If we now
take M, instead of S,, by analogy with (40), then

()\M/éo() )n>1

will be a nonnegative martingale, where
= [[EE***|.7_1) (41)

is called the stochastic exponential (see also Subsection 13, Sect. 6, Chap. 2, Vol. 1).

This expression is rather complicated. At the same time, in using (8) it is not
necessary for the sequence to be a martingale. It is enough for it to be a nonnega-
tive supermartingale. Here we can arrange this by forming a sequence (Z,()),.%,)
((43), below), which sufficiently simply depends on M,, and (M), and to which we
can apply the method used in Sect. 5, Chap. 4.

Lemma 1. Let M = (M,, %,)n>0 be a square-integrable martingale, My = 0,
AMy =0, and |AM,(w)| < ¢ for all n and w. Let X > 0,

(e —1-X)/c%, ¢>0,
Ye(A) = (42)
152, c=0,

and
Zn(/\) — M= Pe(N) (M) (43)

Then for every ¢ > 0 the sequence Z(A\) = (Z,(A\), Zn)n>0 is a nonnegative
supermartingale.

PROOEF. For |x| < ¢,

M -1 =(w)?)

m>2 ’ m>2
Using this inequality and the following representation (Z, = Z,(\)),

AZy, = Zy_1[(*M — 1)67A<M>nwc(/\) + (efA<M>nw(-(A) -1),
we find that

E(AZ, | #y—1)

-7, 1[E(e)‘AM" 1|yn e —AM)utpe(N) +(67A(M>,,w(-(>\) —1)]
L[E( MM — 1 — AAM, | Fu_y) e SN 4 (o= AN _ 1))

€ 2y A [ E(AM, | F,y) e S5 | (o800 _ )
1[N A(M), em SUA) 4 (I 1)) <, (44)

where we have also used the fact that xe ™ + (¢ — 1) < 0 for x > 0.
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We see from (44) that
E(Zn | %171) é anla
ie., Z(A\) = (Z,(N\), %) is a supermartingale.
This establishes the lemma.
O

Let the hypotheses of the lemma be satisfied. Then we can always find A > 0 for
which, for given a > 0 and b > 0, we have a\ — b.(\) > 0. From this we obtain

k<n

P {rilgka > an} =P {maxeAMk > e)‘“"}
<n

<P {maXeAMk—wr()\NM)k > e>\an—wc(>\)<M)n}
- k<n -

=P {maxeAMk_"/)r(ANM)k > ekan_wr(AMM)n <M> < bn}
Kn = y n >

P {maxewk—wfmw)k > A= M gy bn}
k<n -

<P {maxe/\Mkw"()‘)W)k > e’\“”w"(’\)b"} + P{(M), > bn}
k<n

< e "a=bveN) L PL(M), > bn}, )

where the last inequality follows from (7).
Let us write (compare with H(a) in Sect. 5, Chap. 4)

Hc(a7 b) = sup[a)\ - bwt()‘)]

A>0
Then it follows from (45) that
P {rlrclgka > an} < P{(M), > bn} + ¢ "Hc(a:b), (46)

Passing from M to —M, we find that the right-hand side of (46) also provides an
upper bound for the probability P{min,<, M; < —an}. Consequently,

P {Iil<ax M| > an} < 2P{(M), > bn} + 2¢~"H:(@b), (47)

Thus, we have proved the following theorem.

Theorem 6. Let M = (M,,, %#,) be a martingale with uniformly bounded steps, i.e.,
|AM,| < c for some constant ¢ > 0 and all n and w. Then for every a > 0 and
b > 0, we have inequalities (46) and (47).

Remark 2. . ,
ac a
H.(a,b) = - -1 14+ —)—-. 4
(a,b) C<a+c>og(+b> : (48)
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6. Under the hypotheses of Theorem 6, we now consider the question of estimating

probabilities of the type
My
P{sup——>ay,
{ ion (M) }

which characterize, in particular, the rate of convergence in the strong law of large
numbers for martingales (also see Theorem 4 in Sect. 5).

Proceeding as in Sect. 5, Chap. 4, we find that for every a > 0 thereisa A > 0
for which aX — 1.(A) > 0. Then, for every b > 0,

P {sup My > a} <P {supeAMkd’v()\)W)k > e[w\ibc(k)](M%x}
>n (M)k >n

<P {sup AV N (M < g[aw[-wbn} +P{(M), < bn}

k>n
< e A NI P{(M), < bn}, (49)
from which
My —nH,(ab,b)
P 4 sup >ap <P{{M), <bn}+e , (50)
i>n (M)k
M,
P {Sup s a} < 2P{(M), < bn} + 2¢ "Hc(abb), (51)
i>n | (M)

‘We have therefore proved the following theorem.

Theorem 7. Let the hypotheses of the preceding theorem be satisfied. Then inequal-
ities (50) and (51) are satisfied for all a > 0 and b > 0.

Remark 3. A comparison of (51) with estimate (21) in Sect. 5, Chap. 4, for the case
of a Bernoulli scheme, p = 1/2, M, = S, — (n/2), b =1/4, ¢ = 1/2, shows that
for small € > 0 it leads to a similar result:

M
Plsup|-——|>¢e; =P<{su
{kza) (M)« } {k;fz

7. PROBLEMS
1. Let X = (X,, %#,) be a nonnegative submartingale, and let V = (V,,,.%,_1) be
a predictable sequence such that 0 < V.1 <V, < C (P-as.), where C is a
constant. Establish the following generalization of (1):

Sk _k(k/Q)’ > 6} S 26—452n.

n

sP{maxvp(jza}+/ an,,dsz:E\(jA)(j. (52)
< {max; ;<. ViXj<e} j

i<j<n
SIS —1

2. Establish Krickeberg’s decomposition: Every martingale X = (X, .%,) with
sup E |X,| < oo can be represented as the difference of two nonnegative mar-
tingales.
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3.

o

10.

Let &1, &, ... be a sequence of independent random variables, S, = & +-- -+
Enand Sy, = Y7 1 & Establish Ortaviani’s inequality:

j=m

P{|S,
P{max 5] > 2e) < P2
<j<n ming <j<n {|Sj,n| S 8}

and deduce (assuming E§; = 0, i > 1) that

/ P{max |Sj>2t}dt§2E|Sn|+2/ P{|S,| > t}dt. (53)
0 1<i<n 2 ‘“

Let &1,&o,. .. be a sequence of independent random variables with E¢; = 0.
Use (53) to show that in this case we can strengthen inequality (10) to

ES; <SES,.

Verify formula (16).

Establish inequality (19).

Let the o-algebras %, .. .,.%#, be such that %, C %, C --- C .%,, and let the
events Ay € %, k =1, ..., n. Use (22) to establish Dvoretzky’s inequality:
Foreach e > 0,

PlCJAk <e+P

k=1

Z P(Ak | <97(_1) > €‘| .

k=1

Let X = (X,),>1 be a square-integrable martingale and (b,),>1 a nondecreas-
ing sequence of positive real numbers. Prove the following Hdjek—Rényi in-
equality:

1 E(AX;)?
ZA}SAQZ(N}()’ AXy = Xi — Xx—1, Xo = 0.

Let X = (X,),>1 be a submartingale and g(x) a nonnegative increasing convex
function. Then, for any ¢ > 0 and real x,

} < E g(1X,)

P X >
{max k=X g(tx)

1<k<n

In particular,

P{ max X > x} < e TN Ee%,
1<k<n

Let &y, &o, .. . be independent random variables withE &, = 0,E€2 = 1,n > 1.

Let
’C:min{nz 1: Zﬁ, > O}.

i=1

Prove that E1!/2 < oo.
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11. Let ¢ = (&,)n>1 be a martingale difference and 1 < p < 2. Show that

> &
j=1

p o
< Cp Z E |€j‘p
=1

E sup
n>1

for a constant C,,.
12. Let X = (X,),>1 be a martingale with EX,, = 0 and EX? < oco. As a general-
ization of Problem 5 of Sect. 2, Chap. 4, show that foranyn > 1 and e > 0

P{ X > }<7EX’%
1211?;1 k=e T 24+ EX2

4. General Theorems on Convergence of Submartingales
and Martingales

1. The following result, which is fundamental for all problems about the conver-
gence of submartingales, can be thought of as an analog of the fact that in real
analysis a bounded monotonic sequence of numbers has a (finite) limit.

Theorem 1 (Doob). Let X = (X,,,.%,) be a submartingale with

supE |X,| < oo. (1)

Then with probability 1 the limit im X,, = X, exists and E |Xoo| < 0.
PROOF. Suppose that

P(limsup X, > liminf X,,) > 0. 2)
Then, since

{limsup X,, > liminf X, } = U{lim supX, > b > a > liminf X, }
a<b

(here a and b are rational numbers), there are values a and b such that
P{limsupX, > b > a > liminf X,,} > 0. 3)

Let 8,(a, b) be the number of upcrossings of (a,b) by the sequence X1, ..., X,,
and let oo (a, b) = lim, B,(a,b). By (37), Sect. 3,

E[X, —a™ < EX; + |af

<
E fu(a,b) < b—a ~ b-—a

and therefore
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E S0 (a,b) hanB,,(cab)f — ,

which follows from (1) and the remark that

supE|X,| < o0 < supEX <
n n

for submartingales (since EX; < E|X,| =2EX; — EX, <2EX —EX;). But
the condition E S (a,b) < oo contradicts assumption (3). Hence limX, = X
exists with probability 1, and then, by Fatou’s lemma,

E|Xo| < supE|X,| < cc.
n

This completes the proof of the theorem. O

Corollary 1. If X is a nonpositive submartingale, then with probability 1 the limit
lim X,, exists and is finite.

Corollary 2. If X = (X,,, #,)n>1 is a nonpositive submartingale, then the sequence
X = (X, Zp) with1 < n < 00, Xoo = limX, and Fo, = o{|J.%,} is a (nonposi-
tive) submartingale.

In fact, by Fatou’s lemma,
EX, =E limX, > limsupEX, > EX; > —c0
and (P-a.s.)
E(Xoo | #n) = EQim X, | %) > limsup E(X,, | %) > X
Corollary 3. If X = (X,,,-%,) is a nonnegative supermartingale (ov, in particular, a
nonnegative martingale), then lim X, exists with probability 1.

In fact, in that case,

sup E |X,| =supEX, = EX; < o0,
n n

and Theorem 1 is applicable.

2. Let &1, &o, . .. be a sequence of independent random variables with P(§; = 0) =
P(& =2) = 1. ThenX = (X,,.Z}5) with X, = [[}_, & and F$ = o{&1, ..., &} is
a martingale with EX,, = 1 and X,, — X, = 0 (P-a.s.). At the same time, it is clear

that E |X,, — Xoo| = 1, and therefore X, L Xo. Therefore condition (1) does not in
general guarantee the convergence of X, to X, in the L' sense.

Theorem 2 below shows that if hypothesis (1) is strengthened to uniform integra-
bility of the family {X,} (from which (1) follows by (16) of Subsection 5, Sect. 6,
Chap. 2, Vol. 1), then, besides almost sure convergence, we also have convergence
inL'.
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Theorem 2. Let X = {X,, #,} be a uniformly integrable submartingale (that is,
the family {X,} is uniformly integrable). Then there is a random variable X, with
E [Xoo| < 00 such that as n — oo,

X, > X (P-as.), %)
X, 5 X 5)

Moreover, the sequence X = (X, %), 1 < n < oo, with Zoo, = o(|J %) is also a
submartingale.

PROOF. Statement (4) follows from Theorem 1, and (5) follows from (4) and The-
orem 4 (Sect. 6, Chap. 2, Vol. 1).
Moreover, if A € .%,, and m > n, then

EL|X) — Xeo| = 0, m — o0,

and therefore

lim /deP:/XoodP.
m—o00 J, A

The sequence ( f [\ X dP )m ; is nondecreasing, and therefore

>

[xap< [x,aP< [x.ap.
A A A

whence X, < E(X | %) (P-a.s.) forn > 1.
This completes the proof of the theorem.
O

Corollary. If X = (X,,, %,) is a submartingale and, for some p > 1,

sup E [X,, )" < oo, ©)

then there is an integrable random variable X, for which (4) and (5) are satisfied.

For the proof, it is enough to observe that, by Lemma 3 of Sect. 6, Chap. 2, Vol. 1,
condition (6) guarantees the uniform integrability of the family {X,}.

3. We now present a theorem on the continuity properties of conditional expecta-
tions. This was one of the very first results concerning the convergence of martin-
gales.

Theorem 3 (P. Lévy). Let (2, .#,P) be a probability space, and let (%,),>1 be a
nondecreasing family of c-algebras, %1 C Fo C --- C F. Let £ be a random
variable with E|¢| < oo and Zo, = o (|, #,). Then, both P-a.s. and in the L*
sense,

E€|Zn) = E(§]| Fsc), n— o0 @)
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PROOF. LetX, = E(¢|%,), n > 1. Then, witha > 0 and b > 0,

[ miap< [ EGgiF)aP= [ jeap
{1Xa=a} {1Xa=a} {1 >a}

=/ IEIdP+/ €[dP
{|Xu|>a,|€|<b} {IX.|>a,|&|>b}

< bP{IX,| za}+/ €]dP
{1¢]>b}

b
S7E|§|+/ |€|dP.
a {1€1>b}

Letting a — oo and then b — oo, we obtain

lim sup/ |X,|dP =0,
{IXu|>a}

a—o0 5

i.e., the family {X,} is uniformly integrable. Therefore, by Theorem 2, there is a
random variable X, such that X, = E(¢|.%,) — X (P-a.s. and in the L' sense).
Hence we only have to show that

Xoo = E(¢| #x) (P-as.).

Letm > nand A € .%,. Then

/AdeP:/AXndP:/AE(§|§n)dP:/A§dP.

Since the family {X,} is uniformly integrable and since, by Theorem 5, Sect.6,
Chap. 2, Vol. 1, we have E I4|X,, — Xoo| — 0 as m — oo, it follows that

/xde:/wP. (8)
A A

This equation is satisfied for all A € %, and, therefore, for all A € U,fil F.
Since E |Xo| < o0 and E|¢| < oo, the left-hand and right-hand sides of (8) are
o-additive measures, possibly taking negative as well as positive values, but finite
and agreeing on the algebra |~ , .%,. Because of the uniqueness of the extension
of a g-additive measure from an algebra to the smallest o-algebra containing it
(Carathéodory’s theorem, Sect. 3, Chap. 2, Vol. 1), Eq. (8) remains valid for sets A €
Foo = a(lJZ,). Thus

/xde:/gsz/E(ﬂgfw)dP, A€ P ©9)
A A A

Since X and E(¢ | F,) are .#-measurable, it follows from Property I of Sub-
section 3, Sect. 6, Chap. 2, Vol. 1, and from (9) that X, = E(¢ | ¥ ) (P-a.s.).

This completes the proof of the theorem.

O
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Corollary. A stochastic sequence X = (X,,.%,) is a uniformly integrable mar-
tingale if and only if there is a random variable & with E|| < oo such that
X, = E(¢|.%,) for all n > 1. Here X, — E(£| %) (both P-a.s. and in the L'

sense) as n — oo.

In fact, if X = (X,,, #,) is a uniformly integrable martingale, then, by Theorem 2,
there is an integrable random variable X, such that X,, — X, (P-a.s. and in the Lt
sense) and X, = E(X |.%,). As the random variable £ we may take the % -
measurable variable X,

The converse follows from Theorem 3.

4. We now turn to some applications of these theorems.

EXAMPLE 1. The zero—one law. Let &1, &5, . . . be a sequence of independent random
variables, .Z5 = o{¢1,...,&,}, let 27 be the o-algebra of the “tail” events, and
A € Z . By Theorem 3, we have E(I4 | #5) — E(I4| Z5) = 14 (P-ass.). But I
and (&1, ...,&,) are independent. Since E(Iy | .#5) = E 14, and therefore Iy = E I,
(P-a.s.), we find that either P(A) = 0 or P(A) =

The next two examples illustrate possible applications of the preceding results to
convergence theorems in analysis.

EXAMPLE 2. If f = f(x) satisfies a Lipschitz condition on [0, 1), it is absolutely
continuous and, as is shown in courses in analysis, there is a (Lebesgue) integrable
function g = g(x) such that

£(x) —£(0) = / " g(v)dy. (10)

(In this sense, g(x) is a “derivative” of f(x).) Let us show how this result can be
deduced from Theorem 1.
Let Q= [0,1), # = %([0,1)), and let P denote Lebesgue measure. Put

2"
-1 k
En Z { on S < 2}1}7

ﬁn = 0{517 cee ;Sn} = 0{§n}a and

— f(gn + 27") _f(gn)
2-n '

Xn

Since for a given &, the random variable §,,+1 takes only the values &, and &, +
—(n+1) with conditional probabilities equal to 5, we have

E[XnJrl | ﬁn} = E[Xn+1 ‘fn] = 2"t E[f(fn+1 + 27(n+1)) *f(§n+1) |£n}
= 2 TG +27 ) — fE)] + 5[F(6 +27") — (G + 27" )]}
=2"{f(& +27") = f(&)} = X,
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It follows that X = (X, %,) is a martingale, and it is uniformly integrable since
|X,| < L, where L is the Lipschitz constant: |f(x) — f(y)| < L|x — y|. Observe that
F = 2A([0,1)) = (U Z,)- Therefore, by the corollary to Theorem 3, there is an
Z-measurable function g = g(x) such that X,, — g (P-a.s.) and

X, = E[g| 7] Y

Consider the set B = [0, k/2"]. Then, by (11),

r k2" k2"
f(5) 10 =[x = [ etas

and since n and k are arbitrary, we obtain the required equation (10).

EXAMPLE 3. Let Q = [0, 1), # = #([0,1)), and let P denote Lebesgue measure.
Consider the Haar system {H,(x) },>1, as defined in Example 3 of Sect. 11, Chap. 2,
Vol. 1. Put .%, = o{H1,...,H,}, and observe that o (| J.%,) = .%. From the prop-
erties of conditional expectations and the structure of the Haar functions, it is easy
to deduce that

E[f(x)|.Z] = > aHi(x) (P-as.) (12)
k=1

for every Borel function f € L, where

1
a = (f,Hy) = /0 S (x)Hy(x) dx.

In other words, the conditional expectation E[f(x)|.%,] is a partial sum of the
Fourier series of f(x) in the Haar system. Then, if we apply Theorem 3 to the mar-
tingale (E(f | #,), %), we find that, as n — oo,

S HOH(x) = f(x) (P-as.)

k=1

1
J

EXAMPLE 4. Let (£,),>1 be a sequence of random variables. By Theorem 2 of
Sect. 10, Chap. 2, Vol. 1, the P-a.s. convergence of the series > &, implies its con-
vergence in probability and in distribution. It turns out that if the random variables
&1,&9, ... are independent, the converse is also valid: the convergence in distribu-

tion of the series > &, of independent random variables implies its convergence in
probability and with probability 1.

LetS, =& +---4+&, n>1,and S, < 5. Then E & — E ¢S for every real
number 7. It is clear that there is a § > 0 such that | E ¢"| > 0 for all |¢| < §. Choose

and

Z(ﬂ Hy)Hi(x) — f(x)|dx — 0.
k=1
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to so that |tg| < §. Then there is an ng = ng(to) such that | E e05| > ¢ > 0 for all
n > ng, where c is a constant.
For n > ng, we form the sequence X = (X,,, .%,) with

eitgs,,
X = E ¢itos” Fn=0{&,.... &}
Since &1, &a, . .. were assumed to be independent, the sequence X = (X,,.%,) is a

martingale with

sup E|X,| < ¢! < oo

n>ng
Then it follows from Theorem 1 that with probability 1 the limit lim,, X, exists and is
finite. Therefore the limit lim,,_, o, €05 also exists with probability 1. Consequently,
we can assert that there is a 0 > 0 such that for each ¢ in the set T = {z: |f] < §}
the limit lim,, ¢S exists with probability 1.

LetTx Q= {(t,w): t € T,w € Q}, let B(T) be the o-algebra of Lebesgue sets

on T, and let \ be Lebesgue measure on (T, %(T)). Also, let

C= {(t, w) € T x Q: lim ™) exists} .
It is clear that C € B(T) ® F.
It was shown earlier that P(C,) = 1 for every t € T, where C;, = {w €
Q: (t,w) € C} is the section of C at point ¢. By Fubini’s theorem (Theorem 8
of Sect. 6, Chap. 2, Vol. 1),

/TXQIC(t,w)d()\ < P) = /T (/ch(t,w)dp) d)

- / P(C,)d\ = \(T) = 26 > 0.
T

On the other hand, again by Fubini’s theorem,

)\(T):/TXQIC(I,w)d()\xP)z/ﬂdP(/TIC(t,w)d/\> :/Q)\(Cw)dP,

where C,, = {t: (t,w) € C}.

Hence it follows that there is a set € with P(€2) = 1 such that \(C,,) = \(T) =
20 > 0 forall w € Q.

Consequently, we may say that for every w € Q the limit lim, ¢ exists for
all t € C,. In addition, the measure of C,, is positive. From this and Problem 8 it
follows that the limit lim, S, (w) exists and is finite for w € Q. Since P(Q) = 1, the
limit lim,, S, (w) exists and is finite with probability 1.

itS,

5. PROBLEMS

1. Let {%,} be a nonincreasing family of o-algebras, 4 2 %% D ---,let Y, =
(%, and let ) be an integrable random variable. Establish the following analog
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of Theorem 3: As n — oo,
EM|%) — E(|%s) (P-as.andinthe L' sense).

2. Let &, &, ... be a sequence of independent identically distributed random
variables with E |1 < coand E& = m; let S, = & + - - - + &,. Having shown
(Problem 2, Sect. 7, Chap. 2, Vol. 1) that

_Sn

E(&1 | S Suit,...) = E(&1S)) (P-as.),

deduce from Problem 1 a stronger form of the law of large numbers: Asn — oo,

S
= +m (P-as.andinthe L' sense).
n

3. Establish the following result, which combines Lebesgue’s dominated conver-
gence theorem and P. Lévy’s theorem. Let {&,},>1 be a sequence of random
variables such that £, — £ (P-a.s.), [€,| <7, En < oo, and let {Z,, },n>1 be a
nondecreasing family of o-algebras with %, = o(|J.%,). Then

m—o0
n— o0

4. Establish formula (12).
5. Let Q = [0,1],.7 = %([0,1)), let P denote Lebesgue measure, and let f =
f(x) € L*. Set

(k+1)27"
falx) = 2”/ fOdy, k27"<x<(k+1)27"
k —n
Show that f,(x) — f(x) (P-a.s.).
6. Let Q = [0,1),.% = £([0,1)), let P denote Lebesgue measure, and let f =
f(x) € L*. Continue this function periodically on [0, 2), and set

filx) =27 (x+j27).

Jj=1

Show that f,(x) — f(x) (P-a.s.).

7. Prove that Theorem 1 remains valid for generalized submartingales X =
(X, F), if inf,, sup,>,, E(X;" | #n) < oo (P-as.).

8. Let (a,),>1 bea sequence of real numbers such that for all real numbers ¢ with
|lt| < &, § > 0, the limit lim,, e exists. Prove that then the limit lim a,, exists
and is finite.

9. Let F = F(x), x € R, be adistribution function, and let & € (0, 1). Suppose that
there exists 6 € R such that F(0) = . Let us construct the sequence X1, Xa, . . .
so that

Xpp1 =X, —n (Y, —a),
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where Y7, Y5, ... are random variables such that

F(X,) ify=1,

P(Y, =y|X1,. . . X Y1, Yo) = .
( yix ! ) {1F(Xn) ify=0

(the Robbins—Monro procedure). Prove the following result of the stochastic
approximation theory: E |X, — ] — 0, n — oo.

10. Let X = (X,, %u)n>1 be a submartingale such that E(X/(T < o0)) # oo for
any stopping time T. Show that with probability 1 there exists the limit lim,, X,.

11. Let X = (X,, %,)n>1 be a martingale and Fo, = O'(U:il %, |. Prove that
if the sequence (X,),>1 is uniformly integrable, then the limit X, = lim, X,
exists (P-a.s.) and the “closed” sequence X = (X,, %,)1<n<oo is a martingale.

12. Assume thatX = (X,,.%,),>1 is a submartingale, and let %, = 0’( Uz, ﬁn)

Prove that if (X;),>1 is uniformly integrable, then the limit X, = lim, X, ex-
ists (P-a.s.) and the “closed” sequence X = (X,,, Fn)1<n<oo 1S a submartingale.

5. Sets of Convergence of Submartingales and Martingales

1. Let X = (X, .%,) be a stochastic sequence. Let us denote by {X,, —} or {—o00 <
limX, < oo} the set of sample points for which lim X,, exists and is finite. Let
us also write A C B (P-a.s.) if P(Iy < Ig) = 1. We will also write {X,, -~} for
Q\ {X, -} and A = Bas. if P(AAB) = 0.

If X is a submartingale and sup E |X,,| < oo (or, equivalently, if sup E X" < o0),
then according to Theorem 1 of Sect. 4, we have

X, =} =Q (P-as.), ie P{X,-»}=0.

Let us consider the structure of sets {X,, —} of convergence for submartingales
when the hypothesis sup E |X,,| < oo is not satisfied.
Leta > 0,and T, = min{n > 1: X, > a} witht, = ccif {-} = @.

Definition. A stochastic sequence X = (X,,,.%,) belongs to class C* (X € CT) if
E(AX;,)TI{1, < o0} < ()

for every a > 0, where AX,, = X, — X,,_1, Xo = 0.
It is evident that X € C7 if

Esup |AX,| < o0 )

or, all the more so, if
|AX,| < C< oo (P-as.) 3)

foralln > 1.
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Theorem 1. If the submartingale X € C™, then
{supX, < o} ={X, =} (P-a.s.). “4)

PROOF. The inclusion {X,, —} C {supX, < oo} is evident. To establish the oppo-
site inclusion, we consider the stopped submartingale X* = (X n,,-%,). Then, by

(1,
supEX;,\, <a+EX] {1, < oo}
< 2a+ E[(AX;,)" - {1, < 00}] < o0, 5)
and therefore, by Theorem 1 from Sect. 4,
{ts =0} C{X, =} (P-as.).
But |, ¢{t« = 00} = {sup X, < oo}; hence {sup X, < oo} C {X, —} (P-as.}.
This completes the proof of the theorem.
O
Corollary. Let X be a martingale with E sup |AX,| < oo. Then (P-a.s.)
{X, =} U {liminf X, = —o0, limsupX, = 400} = Q. (6)
In fact, if we apply Theorem 1 to X and to —X, we find that (P-a.s.)

{limsupX,, < oo} = {supX, < oo} = {X,, —},
{liminf X, > —oo} = {inf X, > —o0} = {X, —}.

Therefore (P-a.s.)
{limsupX, < oo} U {liminfX, > —oco} = {X, —},

which establishes (6).

Statement (6) means that, provided that Esup |AX,| < oo, either almost all
trajectories of the martingale X have finite limits or all behave very badly, in the
sense that lim sup X,, = +o00 and lim inf X,, = —oc.

2.If £1,&5, . .. is a sequence of independent random variables with E& = 0 and
|&] < ¢ < oo, then, by Theorem 1 from Sect. 2, Chap. 4, the series Y &; converges
(P-a.s.) if and only if Y" E&? < oo. The sequence X = (X, %,) with X,, = & +
oo+ & and F, = o{&1,. .., &} is a square-integrable martingale with (X), =
> E&?Z, and the proposition just stated can be interpreted as follows:

{X)oo <0} ={X, =} =0 (P-as.),

where (X) oo = lim, (X),,.
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The following propositions extend this result to more general martingales and
submartingales.

Theorem 2. Let X = (X,,, %) be a submartingale and
Xy =my, + A,

its Doob decomposition.

(a) If X is a nonnegative submartingale, then (P-a.s.)

{Asw < 0} C{X,, =} C {supX, < o}. (7
(b) If X € CT, then (P-a.s.)

{Xy =} = {supX, < o0} C {Ax < 0} (3)
(c) If X is a nonnegative submartingale and X € C*, then (P-a.s.)

{Xo =} = {sup X, < 00} = {Ax < 0} )

PROOEF. (a) The second inclusion in (7) is obvious. To establish the first inclusion,
we introduce the times

o,=min{n>1:A,41 >a}t, a>0,

taking 0, = 400 if {-} = @. Then A,, < a, and, by Corollary 1 to Theorem 1,
Sect. 2, we have
EXn/\aa = EAn/\aa <a.

Let Y¢ = Xyno,. Then Y4 = (Y4,.%,) is a submartingale with sup EY? < a < o0.
Since the martingale is nonnegative, it follows from Theorem 1 in Sect. 4 that

{Ao <a} ={o, =0} C{X, —»} (P-as.).
Therefore (P-a.s.),

{As < o0} = | {4 < a} C {X, —}.
a>0

(b) The first equation follows from Theorem 1. To prove the second, we notice
that, in accordance with (5),

EAT,,/\n = EX‘Ca/\n < EXx;

Ta /AN

< 2a 4 E[(AX ) {1, < o0},

and therefore
EA,, = ElimA, A, < 0.

Hence {1, = oo} C {Ax < oo}, and we obtain the required conclusion since
Uusolta = 00} = {sup X, < oo}.
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(c) This is an immediate consequence of (a) and (b).
This completes the proof of the theorem.
O

Remark. The hypothesis that X is nonnegative can be replaced by the hypothesis
sup, EX, < oc.

Corollary 1. Let X, = &+ - -+&,, where § > 0, E&; < oo, & are Fi-measurable,
and Fy = {@, QO}. Then (P-a.s.)

{iE(EnI%_l) < oo} C {X, -} (10)

n=1

and if; in addition, E sup, &, < oo, then (P-a.s.)

{i E( | Fn1) < oo} ={X, =} (11)

n=1

Corollary 2 (Borel-Cantelli-Lévy Lemma). If the events B, € .%,, then, if we set
& = Ig, in (11), we find that (P-a.s.)

{ZPB%I <oo}={213<00} (12)

3. Theorem 3. Let M = (M, %,),>1 be a square-integrable martingale. Then
(P-a.s.)
{M)oo < 00} C{M, —}. (13)

If also E sup |AM,|? < oo, then (P-a.s.)

{{M) o < 0} ={M, =}, (14)
where -
=Y E((AM,)?| F 1) (15)

with My = 0, % = {@, Q}

PROOF. Consider the two submartingales M? = (M?2,.%,) and (M +1)? = (M, +
1)2,.%,). Let their Doob decompositions be

M2 =m +A,, (M, +1)>=m! +A.

Then A/, and A]/ are the same, since

A” ZE Mk—|—1 |<g‘\k_1) = E(AM]3|§1(—1) :A:’l
k=1
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because the linear term in E(A(M; + 1)? | %;_1) vanishes. Hence (7) implies that
(P-a.s.)

{{M)oo < 00} = {AL, <00} C{My =} N {(M, +1)* =} = {M, =}

Because of (9), Eq.(14) will be established if we show that the condition
E sup |AM,|? < oo guarantees that M? belongs to C™.
Let T, = min{n > 1: M2 > a}, a > 0. Then, on the set {1, < oo},
[AMZ | = My, — M7 | < [Mz, — Me,—a|?
+2[My, 1| - My, — My, 1| < (AMy,)? 42" ?|AM, |,

whence

E|AMZ|I{t, < 0o} < E(AM,)? I{1, < co} + 2a"/*\/E(AM,,)2 I{t, < o0}
< Esup |AM,|? + 24"/ \/Esup |AM, |2 < cc.

This completes the proof of the theorem.

O

As an illustration of this theorem, we present the following result, which can
be considered as a kind of the strong law of large numbers for square-integrable
martingales (cf. Theorem 2 in Sect. 3, Chap. 4).

Theorem 4. Let M = (M,,, %,) be a square-integrable martingale, and let A =
(A, Fu—1) be a predictable increasing sequence withA; > 1, Ay, = oo (P-a.s.).
If (P-a.s.)
oo
E[(AM;)? | Z;_
ElAM)"| Firi] 22 [ Fid] _ (16)
i=1
then
M,/A, — 0, n— oo, 17)
with probability 1.

In particular, if (M) = (M,,, %,_1) is the quadratic characteristic of the square-
integrable martingale M = (M,,, %,,), and (M), = oo (P-a.s.), then with probabil-
ity 1

MI’[
(M),
PROOF. Consider the square-integrable martingale m = (m,,, .%,) with

—0, n— oo. (18)

L AM;
m, = .

Then
(m), = ' ;\—2 (19)
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Since ,
Mn _ Zk:lAkAmk

Ay Ay ’

we have, by Kronecker’s lemma (Sect. 3, Chap. 4), M,,/A,, — 0 (P-a.s.) if the limit
lim,, m,, exists (finite) with probability 1. By (13),

{(m)eo < 00} C {m, —}. (20)

Therefore it follows from (19) that (16) is a sufficient condition for (17).
If now A, = (M), then (16) is automatically satisfied (Problem 6).
This completes the proof of the theorem.

O

EXAMPLE. Consider a sequence &1, &, . . . of independent random variables with
E¢& =0, Varg = V; > 0, and let the sequence X = {X,, },>¢ be defined recursively
by

XrH—l = 9Xn + €n+17 (21)

where X is independent of &1, &2, . .. and 6 is an unknown parameter, —oo < 6 <
00.

We interpret X,, as the result of an observation made at time n and ask for an esti-
mator of the unknown parameter 6. As an estimator of 6 in terms of Xg, X1, . .., Xy,
we take

n—1
0 - > i—0 XiXit1)/ Vi1
n— n—1
k=0 X]?/VkJrl
taking this to be 0 if the denominator is 0. (The quantity 0, is the least-squares

estimator of 6.)
It is clear from (21) and (22) that

; (22)

. M,
h—=0+ 2,
where
= Xi&ii1 — Xt
M, = Vi An:<M>n:ZV7'
k=0 kF1 k=0 ' Kt1

Therefore, if the true value of the unknown parameter is 6, then
P(d, — 0) = 1 (23)

if and only if (P-a.s.)
M,

Let us show that the conditions

v, = 2
sup VH < 00, Z E (f/" A 1) =00 (25)
n n —1 n
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are sufficient for (24), and therefore sufficient for (23). We have

= 53 - 53 > Xn_exnf 2
> () iR

n=1 n=1
— X7 o~ Xio1 il o
<2 ZVJFG > v <2 up—n+9
n=1 n=1

which follows because

o0

oo
X2 X2 v, V, X2 V,
D S P

Vn+1 Vn - Vn =1 Vn+1 Vn

n=1 n=1
n—1 X7 ..
where (M), =}, 77 by definition.

Therefore

{i(jm):oo}g{<M>oo=oo}.

n=1 n

7 Martingales

By the three-series theorem (Theorem 3, Sect.2, Chap.4) the divergence of
S E((&2/Va) A 1) guarantees the divergence (P-a.s.) of .2 ((£2/V,) A 1).

Therefore P{(M), = oo} = 1, hence (24) follows directly from Theorem 4.

Estimators én, n > 1, with property (23) are said to be strongly consistent; com-

pare the notion of consistency in Sect. 4, Chap. 1, Vol. 1.

In Subsection 5 of the next section we continue the discussion of this example

for Gaussian variables &1, &, .. ..

Theorem 5. Let X = (X,,, %) be a submartingale, and let
X, =m, + A,
be its Doob decomposition. If |AX,| < C, then (P-a.s.)
{(m)oo +Acs <00} ={X, =},
or, equivalently,

{ i E[AX, + (AX,)?|.Z,_1] < oo} ={X, =}

n=1

PROOF. Since

=

and

m, = Z [AXy — E(AXy [ Fi—1)],
=1

(26)

@7

(28)

(29)
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it follows from the assumption that |AXy| < C that the martingale m = (m,, .%#,)
is square-integrable with |Am,| < 2C. Then, by (13),

{(m)oc +Aco <00} C{X, =} (P-as) (30)
and, according to (8),
{X, =} C{As <0} (P-as.).
Therefore, by (14) and (30),
{Xy =} = {Xs 2} N {Ax <00} = {Xy 2} N {Ax <00} N {m, —}

={X), =2} N{Ax < 00} N{{m)so < 0}
={X) =2} N{Axc + (Moo < 00} = {As + (M)o < 0}

Finally, the equivalence of (26) and (27) follows because, by (29),
(m)n = > {E[(AX)? | Fi1] — [E(AX | Zir)]},

and the convergence of the series >~ E(AX |.%_1) of nonnegative terms im-
plies the convergence of > 2 | [E(AXy | #—1)]%. This completes the proof.
O

4. Kolmogorov’s three-series theorem (Theorem 3, Sect. 2, Chap. 4) gives a neces-
sary and sufficient condition for the convergence, with probability 1, of a series > &,
of independent random variables. The following theorem, whose proof is based on
Theorems 2 and 3, describes sets of convergence of » £, without the assumption
that the random variables &1, &o, . . . are independent.

Theorem 6. Let £ = (&, %), n > 1,be a stochastic sequence,let 7o = {2, Q},
and let ¢ be a positive constant. Then the series > &, converges on the set A of
sample points for which the three series

Z P(I&ul = c| Fu-1), Z E(& | Fu-1), ZVar(f,i | Fn-1)
converge, where £5 = £,1(|&,| < ¢).

PROOF. Let X, = >_;_, &. Since (on the set A) the series > P(|&,| > ¢|.Z,1)
converges, by Corollary 2 of Theorem 2, and by the convergence of the series

S E(E | Fuo1), we have
k=1

—an{Ylaslal < o - il <9 Fol - b e

k=1
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Letny = & — E(& | #i—1), and let ¥, = 22:1 M. Then Y = (Y,, %#,) is a square-
integrable martingale with |7;| < 2¢. By Theorem 5 we have

AC {ZVar(g;m,l) < oo} = {(Voo <0} = {Vu >} (32
Then it follows from (31) that
AN{X, -} =4,

and therefore A C {X,, —}. This completes the proof.
O

5. PROBLEMS

1. Show that if a submartingale X = (X,,.%,) satisfies Esup, |X,| < oo, then it
belongs to class CT.

2. Show that Theorems 1 and 2 remain valid for generalized submartingales.

3. Show that generalized submartingales satisfy (P-a.s.) the inclusion

{infsup E(X | Zn) < oo} C{X, —}.

m p>m

4. Show that the corollary of Theorem 1 remains valid for generalized martingales.
Show that every generalized submartingale of class C™ is a local submartingale.
6. Leta, >0, n>1,and letb, = Y ;_, ax. Show that

> a
n
n=1 "

9,1

6. Absolute Continuity and Singularity of Probability
Distributions on a Measurable Space with Filtration

1. Let (£, %) be a measurable space on which there is defined a family (.%#,),>1 of
o-algebras such that #; C %, C --- C % and

ﬁa([jﬁn) €))

n=1

Let us suppose that two probability measures P and P are given on (9, .%). Let us
write

P,=P|Z, P,=P|%,

P,
for the restrictions of these measures to .%,, i.e., let P, and IS,, be measures on
(R, %,), and for B € Z#, let
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Recall that the probability measure P is absolutely continuous with respect to P
(notation, P < P) if P(A) = 0 whenever P(A) =0, A € .F

When P < Pand P < |5, the measures P and P are equivalent (notation,
P~ P).

The measures P and P are singular (or orthogonal) if there is a set A € .% such
that P(A) = 1 and P(A) = 1 (notation, P L P).

Definition 1. We say that P is locally absolutely continuous with respect to P (no-
-]
tation, P < P) if ~
P, < P, 2)

for every n > 1.

The fundamental question that we shall consider in this section is the determina-

tion of conditions under which local absolute continuity P << P implies one of the
properties P< P,P ~P,P L P.It will become clear that martingale theory is the
mathematical apparatus that lets us give definitive answers to these questions.
Recall that the problems of absolute continuity and singularity were considered
in Sect. 9, Chap. 3, Vol. 1, for arbitrary probability measures. It was shown that the
corresponding tests could be stated in terms of the Hellinger integrals (Theorems 2
and 3 therein). The results about absolute continuity and singularity for locally ab-
solutely continuous measures to be stated below could be obtained using those tests.
This approach is revealed in the monographs [34, 43]. Here we prefer another pre-
sentation, which enables us to better illustrate the possibilities of using the results on
the sets of convergence of submartingales obtained in Sect. 5. (Note that throughout
this section we assume the property of local absolute continuity. This is done only
to simplify the presentation. The reader is referred to [34, 43] for the general case.)

~ loc
Let us then suppose that P < P. Denote by
dP,
dP,

in =

the Radon—Nikodym derivative of |5n with respect to P,. It is clear that z,, is .%,-
measurable; and if A € .%,, then

IE,n it ot
/zn+1dP — / i1 yp_ P.i1(A) =P,
A A dPn+1

d n /
F Zn d .
A A

It follows that, with respect to P, the stochastic sequence z = (z,,.%p)p>1 1S @
martingale.

The following theorem is the key to problems on absolute continuity and singu-
larity.

(4)

N
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Theorem 1. Let P I%C P.
(a) Then with £(P + P)-probability 1 there exists the limit lim,, z,, to be denoted
by 7z, such that
P(zoo = 00) = 0.

(b) The Lebesgue decomposition

P(A) = /zoodP—HS(A N{Zoo = 0}), A€ ZF, 3)
A

holds, and the measures P(A N {zo = 00}) and P(A), A € .7, are singular.

PROOF. Let us notice first that, according to the classical Lebesgue decomposition
(see (29) in Sect. 9, Chap. 3, Vol. 1) of an arbitrary probability measure P with re-
spect to a probability measure P, the following representation holds:

P(A):/%dP+f’(Aﬂ{5zO}), AeZ, (4)

A

where ~
dP  _ dP
3=/ 3= 7
dQ dQ
and the measure Q can be taken, for example, to be Q = %(P +5) Conclusion (3)
can be thought of as a specialization of decomposition (4) under the assumption that

~ loc . ~
P« P,ie,P, < P,.
Let

P, _ _ dP, 1l =
3n - TQH» 5;1 - TQL’ Qn - i(Pn +Pn)

The sequences (3,,, %#,) and ( 3,, %,) are martingales with respect to Q such that
0 <3, <2,0 <}, <2. Therefore, by Theorem 2, Sect. 4, there exist the limits

doo = h}lnﬁm Joo = hrllngn )

both Q-a.s. and in the sense of convergence in L*($2,.%, Q).
The convergence in L' (2,.%, Q) implies, in particular, that for any A € .%,,

/3oon:lim gndQ:/gmszlsm(A):ﬁ(A)'

A nfoo Jq A

Then we obtain by Carathéodory’s theorem (Sect.3, Chap.2, Vol. 1) that for any
Ae F =0, %)

/Ajoon = P(4),
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ie., dﬁ/dQ = 300, and, similarly,

/A;,och =P(A),

ie,dP/dQ = 300.

Thus, we have established the result that was to be expected: If the measures
P and Q are defined on .# = o(|J.%#,) and P,,Q, are the restrictions of these
measures to .%,, then

lim 4P, = ﬁ

n dQ, dQ
(Q-a.s. and in L' (Q2,.#,Q)). Similarly,

lim dis" = £

n dQ, dQ’

In the special case under consideration, where P,, < P,, n > 1, it is not hard to
show that (Q-a.s.)

In= —, (6)

and Q{3, = 0,3, = 0} < 2[P{3, = 0} + P{3, = 0}] = 0, so that (6) Q-a.s. does
not involve an indeterminacy of the form §.
The expression of the form %, as usual, is set at +o0o0. It is useful to note that, since
(3n, %) is a nonnegative martingale, relation (5) of Sect. 2 implies that if 3, = 0,
then 3, = 0 for all n > 1 (Q-a.s.). Of course, the same holds also for (3,, %,).
Therefore the points 0 and +oco are “absorbing states” for the sequence (z,),>1.

It follows from (5) and (6) that the limit

lim,, 3, _ 3oo

lim, 3, 3o

)

Zoo = limz, =
n

exists Q-a.s.

Since P{30c = 0} = f{am:O} 300 dQ = 0, we have P{zo, = oo} = 0, which
proves conclusion (a).

For the proof of (3) we use the general decomposition (4). In our setup, by what

has been proved, we have 3 = % =300, 3 = % = 300 (Q-a.s.), hence (4) yields

ﬁ(A):/AgﬁdPﬁ(Am{soo:o}).

doo

In view of (7) and the fact that Is{z'OO = 0} = 0, we obtain the required decomposi-
tion (3). Note that due to P{zoc < 0o} = 1, the measures

P(A) =P(AN{z00 <0}) and P(AN{ze = 0}), A€.Z,

are singular.
O
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The Lebesgue decomposition (3) implies the following useful tests for absolute
continuity or singularity of locally absolutely continuous probability measures.

-1 -
Theorem 2. Let P 2<C P,ie,P, < P,,n>1.Then

P<P&oEi=1&P(ze<x) =1, (8)
PLP&Eze=0%Pzeo =00) =1, )

where E denotes averaging with respect to P.
PROOF. Setting A = Q in (3), we find that

Ezoo =1 & P(z00 = 0) =0, (10)
Ezoo =0 < P(zoo = 00) = 1. (11)

If P(z0o = 00) = 0, it again follows from (3) that P < P.

Conversely, let P < P. Then, since P(zo, = 00) = 0, we have P(zo, = 00) = 0.

In addition, if P L P, there is a set B € .% with P(B) = 1 and P(B) = 0. Then
P(BN (200 = 00)) = 1 by (3), and therefore P(z, = oo) = 1.If, on the other hand,
P(200 = 00) = 1, the property P L P is evident, since P(zo, = 00) = 0.

This completes the proof of the theorem.

O

2. It is clear from Theorem 2 that the tests for absolute continuity or singularity can
be expressed in terms of either P (verify the equation Ezo, = 1 or Ezo, = 0) or P
(verify that P(z., < 00) = 1 or that P(zo = 00) = 1).

By Theorem 5 in Sect. 6, Chap. 2, Vol. 1, the condition Ez., = 1 is equivalent to
the uniform integrability (with respect to P) of the family {z,},>1. This allows us

to give simple sufficient conditions for the absolute continuity P < P. For example,
if

sup E[z, log™ Zn] < 00 (12)
or, if
supEz! ™ <00, €>0, (13)

then, by Lemma 3 in Sect. 6, Chap. 2, Vol. 1, the family of random variables {Zn}n21
is uniformly integrable, and therefore P<P.

In many cases, it is preferable to verify the property of absolute continuity or
of singularity using a test in terms of P, since then the question is reduced to the
investigation of the probability of the “tail” event {zo, < oo}, where one can use
propositions like the zero—one law.

Let us show, by way of illustration, that the Kakutani dichotomy can be deduced
from Theorem 2.

Let £ = (&,&,...) and £ = (51,527 ...) be sequences of independent random
variables defined on a probability space (€2, %, P).
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Let (R, %) be the measurable space of sequences x = (x1,xa2,...) of real
numbers with oo = Z(R>), and let B, = o{x1,..., %, }. }

Let P and P be the probability distributions on (R*°, B.,) for ¢ and &, respec-
tively, i.e.,

P(B)=P{¢cB}, P(B)=P{¢cB}, Bc%..

Also, let } R
P, =P| %, P,=P|%,

be the restrictions of P and P to A, and let

Pin(A) =P(& €4), Pg,,(A) = P(gn €A), A€ %(Rl)'

Theorem 3 (Kakutani Dichotomy). Let £ = (£1,&2,...) and £ = (§~1, &, .. .) be
sequences of independent random variables for which

Pg” < Pgu, n>1. (14)
Then either P < P or P 1 P.

- ~1
PROOF. Condition (14) is evidently equivalent to P, < P,, n > 1,1i.e., P 2<C P.1tis
clear that

= G = 1) ),
where
Pe,
qi(-xi):dp&(xi)' (15)
Consequently,

{x: 200 < 00} = {x: logzeo < 00} = {x: ilogq;(x;) < oo}‘

i=1

The event {x: > .=, log g;(x;) < oo} is a tail event. Therefore, by the Kolmogorov
zero—one law (Theorem 1, Sect. 1, Chap. 4) the probability P{x: z,, < oo} has only
two values (0 or 1), and therefore, by Theorem 2, either PlLPorP<P.

This completes the proof of the theorem.

O
3. The following theorem provides, in “predictable” terms, a test for absolute conti-
nuity or singularity.

~ loc
Theorem 4. Let P 2<L P, and let
Oy =Zuzy 1, N> 1,

with zo = 1. Then (with %, = {@,})
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ﬁ’<<P<:>|5{§:[1E(\/@|%_1)] <oo} =1, (16)
ISJ_P<:>|5{§:[1—E(\/OT,1|<%1—1)]ZOO}=1. (17)

n=1

PROOF. Since
P{z =0} = / zdP =0,
z,=0}

we have (P-a.s.)
zn—Hak—exp{Zlogak}. (18)
k=1 k=1

Setting A = {zo, = 0} in (3), we find that P{z,, = 0} = 0. Therefore, by (18), we
have (P-a.e.)

{20 < 0} = {0 < 200 < 0} = {0 < limz, < oo}

n

:{—oo<lim210gak<oo}. (19)

k=1
Let us introduce the function
_ X, |)C| S 1;
u(x) = {signx, |x| > 1.
Then

{ -0 < limZbgak < oo} = { —o00 < limZu(logak) < oo}. (20)

k=1 k=1

Let E denote averaging with respect to P, and let 7 be an .%,-measurable inte-
grable random variable. It follows from the properties of conditional expectations
(Problem 4) that

21E(| Fu_1) = E(mzn | Fu_1) (P-and P-as.), QD

E(|-Zu1) =22 \E(z| Zu1)  (P-as.). (22)

Recalling that o, = z2 ;z,, we obtain the following useful formula for “recalcula-
tion of conditional expectations” (see (44) in Sect. 7, Chap.2, Vol. 1):

E(n | Fu-1) = Elaun | Fu-1) (ls'&s')- (23)

From this it follows, in particular, that

E(a, | %-1) =1 (P-as.). (24)



6 Absolute Continuity and Singularity of Probability Distributions. .. 171
By (23),
E[u(log ) | Zn_1] = Eauu(log a,) | Fu1] (P-a.s.).
Since xu(log x) > x — 1 for x > 0, we have, by (24),
E[u(log ay) | Zu_1] >0 (P-as.).

It follows that the stochastic sequence X = (X, .-%,) with

n

Xy = Z M(lOg ak)v

k=1

is a submartingale with respect to P and |AX,| = |u(log ov,)| < 1.
Then, by Theorem 5 in Sect. 5, we have (P-a.e.)

{ — 00 < limzn:u(logozk) < oo}

k=1

= { Z E[u(log ci) + u?(log o) | Fi1] < oo}. (25)

k=1
Hence we find, by combining (19), (20), (22), and (25), that (P-a.s.)

{200 < 0} = { Z E[u(log i) + u?(log o) | Fi1] < oo}
k=1

= { Z Elcuu(log ax) + agu®(log on) | Fi—1] < oo}

k=1
and consequently, by Theorem 2,
P<P& IS{ Z Elagu(log oy) + axu®(log ow) | Fi—1] < oo} =1, (26)
k=1

PLP= ﬁ{ > Efogu(log o) + c® (log ay) | Fuei] = oo} =1. @0
k=1

We now observe that by (24),
E[(1 — vaw)? | Zuoa] = 2E[1 — Vau | Fui]  (P-as)
and for x > 0 there are constants A and B (0 < A < B < 00) such that

A1 — /x)? < xu(logx) + xu*(logx) +1 —x < B(1 — vx)% (28)
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Hence (16) and (17) follow from (26), (27) and (24), (28).
This completes the proof of the theorem.
O

Corollary 1. If, for all n > 1, the o-algebras o(cy,) and %,_1 are independent

- -1
with respect to P (or P), and P 3 P, then we have the following dichotomy: either
P < PorP L P. Correspondingly,

P<Ps ) [1-E/a) <o,
n=1

PLP& > 1 —Eya,]=oc.
n=1

In particular, in the Kakutani situation (see Theorem 3) o, = q,, and

P<Pe iu — Ev/qu(x)] < o0,
PLP& > [1-EVg(n) =oc.

~ loc
Corollary 2. Let P < P. Then
Is{z E(ayloga, | %—1) < oo} =1=P<P.
n=1
For the proof; it is enough to notice that
xlogx+3(1—x) > 1—x'/2, (29)
for all x > 0, and apply (16) and (24).

Corollary 3. Since the series Y- [1 — E(/a | #u_1)], which has nonnegative

(P-a.s.) terms, converges or diverges with the series 3" | log E(\/ay, | Z,_1)|, con-
clusions (16) and (17) of Theorem 4 can be put in the form

|5<<P<:>|5{Z|logE(\/cTnﬂn1)|<oo}:17 (30)

n=1

|5LP<:>F3{2|1ogE(\/a<%1)I=oo}:1. (31)
n=1

Corollary 4. Let there exist constants A and B such that 0 <A <1, B> 0, and

Pl-A<a,<1+B}=1, n>1.
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~ loc
Then, if P <P, we have

P<«<Pe ﬁ{iE[u — )| P < oo} =1,

n=1

P L P@ﬁ{iE[u_%)ﬂyﬂ_l]:m}:1.

n=1

For the proof it is enough to notice that if x € [1 — A, 1 + B], where 0 < A < 1,
B > 0, there are constants ¢ and C (0 < ¢ < C < o0) such that

c(l1—x?<(1-vx)?<cl—x>~ (32)

4. Using the notation of Subsection 2, let us suppose that { = (£1,&,...) and
5 = (51,52, ...) are Gaussian sequences and P,, ~ P,, n > 1. Let us show that,
for such sequences, the “predictable” test given above implies the Hdjek—Feldman
dichotomy: either P ~ Por P L P.

By the theorem on normal correlation (Theorem 2 of Sect. 13, Chap. 2, Vol. 1) the
conditional expectations E(x, | %,_1) and E(x, | #,-1), where E and E are expec-
tations with respect to P and P, respectively, are linear functions of x1, ..., x,_1.
We denote these linear functions by a,_1(x) and a,—i(x) (where ag(x) = ao,
ap(x) = ao are constants) and put

bur = (Els — anr (0]°) 2
by—1 = (E[x, _anfl(x)]Q)l/Q-

A
[

AN
|

Again by the theorem on normal correlation, there are sequences € = (1, €9, . . .)
and £ = (£1,&2,...) of independent Gaussian random variables with zero means
and unit variances, such that (P-a.s.)

gn = an—l(g) + bn—lgm

- - (33)
é-n = ap-1 (6) +bu_1&s-
Notice that if b,_1 = 0, or b,_; = 0, it is generally necessary to extend the
probability space in order to construct (g,) or (&,). However, if b,_; = 0, the
distribution of the vector (xi,...,x,) will be concentrated (P-a.s.) on the linear
manifold x, = a,-1(x), and since by hypothems P, ~ P,, we have b,, 1 =0,
a1 = a,_1(x), and o, (x) = 1 (P- and P-a.s.). Hence we may suppose without
loss of generality that bf >0, 133 > ( for all n > 1, since otherwise the contribution
of the corresponding terms of the sum Y~ | [1—E(y /v, | #,—1)] (see (16) and (17))
is zero.
Using the Gaussian hypothesis, we find from (33) that, forn > 1,

—1 (xn ap—1 (X))2 (xn a~n—1 (X))2
n — - ~ b} 4
(0% dn—l exp { 2 5 ) + 2 ’% ] (3 )
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where d, = |b,/b,| and

ap=E&,  ao = E¢,
by = Vargy, 13% = Varé;.

From (34),

L 2d, By (@)~ a ()
1/2 n—1 n-l nl it
lOg E(an/ |f@n*1):§10g1+d2 1 N 1+d2 1 ( bn—l .

Since log [2d,—1/(1 + d>_,)] < 0, statement (30) can be written in the form

. (&1, 1+d2,
PKP&P E ~log ———
< P& {n_l [2 og 5,
2 (1 (x) — (0
. i z < =1 (35
+1+d3_1< bu1 )] OO} )

The series
1

oo + drgl_l 0o )
Z log m a,nd Z(dn—l — ].)
n=1 n=1

converge or diverge together; hence it follows from (35) that

oo 2 792 2
P«P@P{Z[(Azgx))—F(ig—l)}<oo}:1, (36)

n=0

where A, (x) = a,(x) — a,(x).
Since a, (x) and @, (x) are linear, the sequence of random variables {A, (x) /b, }»>0
is a Gaussian system (with respect to both P and P). As follows from the lemma

that will be proved below,
7 A (x)\?2 _ = An(x)
Hence it follows from (36) that

P<<P<:>§: [E(A’l'):x)>2+ (ié— )2} < 00

n=0

)2 < 0. 37)

and in a similar way

ﬁLP@P{i{ béx))+(b’zl>2] <oo}0
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Then it is clear that if P and P are not singular measures, we have P < P. But
by hypothesis, P, ~ P,, n > 1; hence by symmetry, we have P < P. Therefore we
have the following theorem.

Theorem 5 (Hijek—Feldman Dichotomy). Let ¢ = (&1,&,...) and € =
(51,52,.. .) be Gaussian sequences whose finite-dimensional distributions are
equivalent: P, ~ P,, n > 1. Then either P ~ P or P L P. Moreover,

[e’s} 2 7 2
s = [ Ay(x) b?l
PNP@Z[E< G + b—%—l < 00,
~ [e'e] ~ An(x) 2 22 2
pLP (=2 1) | = .
o2 [E(50) ()] -~
Lemma. Let 3 = (3,),>1 be a Gaussian sequence defined on (0, .7, P). Then

{ZBQ<OO}>O®P{Zﬁ2<oo}—1(:>ZE62<oo (39)

n=1

(38)

PROOF. The implications (<=) are obvious. To establish the implications (=), we
first suppose that E, = 0, n > 1. Here it is enough to show that

-2

ey i< [Een (-2 0)] (0)
n=1 n=1

since then the condition P{}" 52 < oo} = 1 will imply that the right-hand side of
(40) is finite. Therefore then Zn: 2 < oo, and hence P {>"° 2 < oo} =1
by the implication (<=).

Select an n > 1. Then it follows from Sects. 11 and 13, Chap. 2, Vol. 1, that there
are independent Gaussian random variables S ,, k = 1,...,r < n, with Ef; , = 0,

such that 0 ,
D BR=> B
k=1 k=1

If we write Eﬂfn = i, We easily see that

ED B2 => Mn (41)
k=1 k=1
and

Eexp( Zﬁkn> = H 142X n)” 1/2 42)

k=1
Comparing the right-hand sides of (41) and (42), we obtain

n r r —2 n —2
ES R =EY A, < [Eexp<26ﬁnﬂ _ {Eexp<2ﬂ£)] ,
k=1 k=1 k=1 k=1

from which, by letting n — oo, we obtain the required inequality (40).
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Now suppose that Eg, # 0.

Let us consider another sequence, 5’ = (8,,),121, with the same distribution as
B = (Bn)n>1 but independent of it (if necessary, extending the original probability
space). If P{>_>° 32 < oo} > 0, then P{3_° (8, — 8,)® < oo} > 0, and by
what we have proved

QiE( — EB,)? ZE

n=1

Since

(Eﬂn)z S 253 + 2(511 - Eﬁn)27
we have 72 (Ef3,)? < oo, and therefore

> Ep= ZEﬁn +ZE , — EB,)?
n=1 n=1

This completes the proof of the lemma.
O

5. We continue the discussion of the example in Subsection 3 of the preceding
section, assuming that £y, &1, ... are independent Gaussian random variables with
E& =0, Varg =V, > 0.
Again we let
XnJrl = 9Xn + £n+1

for n > 0, where Xy = &, and the unknown parameter 6 that is to be estimated has
values in R. Let 6,, be the least-squares estimator.

Theorem 6. A necessary and sufficient condition for the estimator én, n>1,to be
strongly consistent is that

o0

> 43)

=0 n+1

PROOF. Sufficiency. Let Py denote the probability distribution on (R*, %) cor-
responding to the sequence (X, X1, ...) when the true value of the unknown pa-
rameter is 0. Let Ey denote an average with respect to Py.

We have already seen that

A M,
O, =0+ ——,
(M),
where )
kakﬂ — X7
M, , n =
Z Vk+1 > Z Vk+1
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According to the lemma from the preceding subsection,
P@(<M>oo = OO) =1 < E9<M>Oo = 00,

i.e., (M)oo = oo (Pg-a.s.) if and only if

o EgX?
; Vk+]1( = o0. (44)
But \
EoX? = ZGQ’VH
i=0
and
- EOXI? _ - ( 2i )
; Vier Z 7 Vit 29 Vi
_ - 2k - 2%k i—k
7; ZV-H ; Vit +k219 <ZV+1>. )

Hence (44) follows from (43), and therefore, by Theorem 4, the estimator én, n>1,
is strongly consistent for every 6.

Necessity. For all § € R, let Pg(én — 0) = 1. Let us show that if 6; # 65,
the measures Py, and Py, are singular (Pg, L Pp,). In fact, since the sequence
(Xo, X1, ...) is Gaussian, by Theorem 5, the measures Py, and Py, are either
singular or equivalent. But they cannot be equivalent, since, if Py, ~ Py, but
Py, (6, — 61) = 1, then also Py, (6, — 0;) = 1. However, by hypothesis,
Py, (0, — 03) = 1 and 6 # 6. Therefore Py, L Py, for 6, # 0.

According to (38),

Pgl J.sz 91 —92 ZE91 |:Vk :| =0
+1

for 1 # 0,. Taking #; = 0 and 05 # 0, we obtain from (45) that

Py L Py, @Z
i—0 H—l

= 0Q,

which establishes the necessity of (43).
This completes the proof of the theorem.
O
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6. PROBLEMS

Prove (6).
2. LetP, ~ P,, n> 1. Show that

—_—

P~P& Pz <0} =P{zeo >0} =1,
PLPoP{zp=00}=1 or P{zo=0}=1.

3. LetP, < P,, n>1,letthbea stopping time (with respect to (Fn)), and let
P, =P | #: and P = P | % be the restrictions of P and P to the o- algebra
. Show that P, < P if and only if {T = oo} = {zoo < 00} (P-as.). (In
particular, if P{T < oo} = 1, then P < P..)

Prove the “recalculation formulas” (21) and (22).

Verify (28), (29), and (32).

Prove (34).

In Subsection 2, let the sequences £ = (&1, &2, ...) and = (51, &, . .) consist
of independent identically distributed random variables. Show that if Pg < Py,
then P < P if and only if the measures Pél and P¢, coincide. If, however, Pél <

P¢, and Pg # Py, then P_LP

Nowns

7. Asymptotics of the Probability of the Outcome of a Random
Walk with Curvilinear Boundary

1. Let &1, &9, ... be a sequence of independent identically distributed random vari-
ables. Let S, = & + -+ + &, let g = g(n) be a “boundary,” n > 1, and let

t=min{n >1: 8§, < g(n)}

be the first time at which the random walk (S,,) is found below the boundary g =
g(n). (Asusual, 1= 0 if {-} = 2.)

It is difficult to discover the exact form of the distribution of the time 7. In the
present section we find the asymptotic form of the probability P(t > n) as n — oo,
for a wide class of boundaries ¢ = g(n) and assuming that the &; are normally
distributed. The method of proof is based on the idea of an absolutely continuous
change of measure together with a number of the properties of martingales and
Markov times that were presented earlier.

Theorem 1. Let &1, &5, . . . be independent identically distributed random variables
with & ~ A (0, 1). Suppose that g = g(n) is such that g(1) < 0 and, forn > 2,

0 <Agn+1) < Ag(n), (1)

where Ag(n) = g(n) — g(n — 1) and
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logn = o(%[Ag(k)P), n— 0. (2)
Then .
P(t>n) =exp { - % Z[Ag(k)]z(l + 0(1))}, n— 0. 3)
k=2

Before starting the proof, let us observe that (1) and (2) are satisfied if, for exam-
ple,
g(n) = an” + b, %<V§1, a+b<0, a>0,

or (for sufficiently large n)

<v<l,

N[

g(n) =n"L(n),

where L(n) is a slowly varying function (e.g., L(n) = C(logn)?, C > 0, with
arbitraryﬁfor% <v<lorwith > 0forv= %).

2. We shall need the following two auxiliary propositions for the proof of Theo-
rem 1.

Let us suppose that £1, &3, . . . is a sequence of independent identically distributed
random variables, & ~ 4(0,1). Let %y = {&,Q}, F, = o{&1,...,&}, and let
a = (ay, F,—1) be a predictable sequence with P(|a,,| < C) =1, n > 1, where C
is a constant. Form the sequence z = (z,, .%,) with

n 1 n
Zn:exp{Zakfk—QZa,%}, n>1. %)
k=1 k=1

It is easily verified that (with respect to P) the sequence z = (z,,.%,) is a martingale
withEz, =1, n > 1. R

Choose a value n > 1 and introduce a probability measure P,, on the measurable
space (2, .#,) by putting

P.(A) =EI(A)z,, A€ .Z,. (5)

Lemma 1 (Discrete version of Girsanov’s theorem). With respect to P.., the random
\iariables & = & — ag, 1 < k < n, are independent and normally distributed,

& ~ A(0,1).

PROOF. Let E,, denote the expectation with respect to Isn. Then for \y € R, 1 <
k <n,

E., exp {lz )\kék} =E exp {IZ /\kgk}zn
k=1 k=1
n—1 B aQ
=E {GXP {l; )\kfk}zn—l -E {GXP <i>\n(£n - an) + O‘ngrt - 2n> ’%1—1}]
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n—1 n
1
=E {GXP {i > Akfk}zn—1:| exp{—g\} == eXP{ -3 > /\13}
k=1 k=1

Now the desired conclusion follows from Theorem 4, Sect. 12, Chap.2, Vol. 1. O

Lemma 2. Let X = (X, ﬁn)nzl be a square-integrable martingale with mean zero
and
o=min{n >1:X, < —b},

where b is a constant, b > 0. Suppose that
PX:1 <-b)>0

Then there is a constant C > 0 such that, for alln > 1,

P(oc >n) > Exz’ (6)
PROOF. By Corollary 1 to Theorem 1 in Sect. 2, we have E X, »,, = 0, whence
—EI(c <n)X, =EI(c > n)X,. @)

On the set {0 < n}
—X, >b>0.

Therefore, forn > 1,
—EIlc <n)X, >bP(c <n) >bP(c =1)=bP(X; <-b)>0. (8)
On the other hand, by the Cauchy—Schwarz inequality,
El(c >n)X, < [P(o >n)-EX3Y/2 )
which, with (7) and (8), leads to the required inequality with

= (bP(X; < —b))%
O

PROOF OF THEOREM 1. It is enough to show that

1
hnrglorolflogP T>n /Z [Ag(k -5 (10)
and .
lim sup log P(t > n) /Z Ag(k —%. an

n— o0
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For this purpose we consider the (nonrandom) sequence (v, ),>1 with
a1 =0, o,=A7Agn), n>2
and the probability measures (Isn)n21 defined by (5). Then, by Holder’s inequality,
P.(t>n) = EI(T > n)z, < (P(t > n))Y9(E£)?, (12)

wherep > landg=p/(p — 1).
The last factor is easily calculated explicitly:
()7 —exp{ L1 znj[Ach)P . (13)
n 2

k=2

Now let us estimate the probability P, (T > n) that appears on the left-hand side
of (12). We have

Po(t>n) =P, (S > gk), 1 <k <n)=P,(S >g(1), 1 <k <n),

where S, = Ele &, & = & — a;. By Lemma 1, the variables &, ..., &, are in-
dependent and normally distributed, & ~ .47(0, 1~), with respect to the measure P,,.
Then, by Lemma 2 (applied to b = —g(1), P = P,, X,, = S,)), we find that

1

Pt>n) > (14)

where C is a constant.
Then it follows from (12)—(14) that, for every p > 1,

P(t>n) > C exp{ ‘Z [Ag(k)]* — pl:
k=2

T logn}, (15)

where C,, is a constant. Then (15) implies the lower bound (10) by the hypotheses
of the theorem, since p > 1 is arbitrary. ~
To obtain the upper bound (11), we first observe that since z, > 0 (P- and P-a.s.),
we have, by (5),
P(t > n) = EJ(t > n)z; ', (16)

where E,, denotes an average with respect to Pn.
In the case under consideration «v; = 0, «,, = Ag(n), n > 2, and therefore for

n>2
i —exp{ ZAg ek+2Z[Ag<k>F}.

k=2

By the formula for summation by parts (see the proof of Lemma 2 in Sect. 3,
Chap.4)
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n

D Ag(k) - &= Ag(n) - Sy — Y Si1A(Ag(k)).

k=2 k=2

Hence, if we recall that, by hypothesis, Ag(k) > 0 and A(Ag(k)) < 0, we find that,
on the set {t > n} = {Sx > g(k), 1 <k <n},

> Ag(k) - & > Ag(n) - g(n) = gk — 1)A(Ag(k) — &1A¢g(2)
k=2 k=3

[Ag(k)]” + (1) Ag(2) — £1Ag(2).
k=2

Thus, by (16),

n

P(t>n) < exp{ - % > Mg ~ g(l)Ag(2)} E (1> n)e 148
k=2

n

= exp{—g(l)Ag(2)}eXp{ — ;Z[Ag(k)]Q} E. (T > n)e $14¢2)

k=2

where
E (T > n)e §282) < Ege6882) — E 68802 < o0,

Therefore
1 )
P(t > n) < Cexp { ~5 Z[Ag(k)] },
k=2
where C is a positive constant; this establishes the upper bound (11).

This completes the proof of the theorem.
O

3. The idea of an absolutely continuous change of measure can be used to study
similar problems, including the case of a two-sided boundary. We present (without
proof) a result in this direction.

Theorem 2. Let &1, &5, . . . be independent identically distributed random variables
with & ~ A (0, 1). Suppose that f = f(n) is a positive function such that

f(n) = 00, n— oo,

and
n

z:[Af(k)]2 = 0<Zf_2(k)), n— oo.
k=2 k=1
Then for

o=min{n > 1: |S,| > f(n)}
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we have

P(c > n) :exp{—ﬂ-SZf_Q(k)(l—&—o(l))}, n — oo. (17

k=1
4. PROBLEMS

1. Show that the sequence defined in (4) is a martingale. Is it still true without the
condition |a,| < ¢ (P-a.s.), n > 17

2. Establish (13).

3. Prove (17).

8. Central Limit Theorem for Sums of Dependent Random
Variables

1. In Sect. 4, Chap. 3, Vol. 1, the central limit theorem for sums S,, = &1 + - - - + &y
n > 1, of random variables &1, ..., &, was established under the assumptions
of their independence, finiteness of second moments, and asymptotic negligibility
of their terms. In this section, we give up both the assumption of independence
and even that of the finiteness of the absolute first-order moments. However, the
asymptotic negligibility of the terms will be retained.

Thus, we suppose that on the probability space (2, %, P) there are given stochas-
tic sequences

gn:(gnkvgzkn)v Oékgna l’lZl,

with 0 =0, 7§ ={2,Q}, F! C F#, C.F (k+1<n). Weset

(]

X?:anln 0<r< 1
k=0

Theorem 1. For a givent, 0 < t < 1, let the following conditions be satisfied: for
eache €(0,1),asn — oo,
@) Y Plgul > el Fiy) So.
B S Elgwd(6ul <) | F)] S0,
©) Z,[(":t]l Var[&ul (|6 <€) | Fi4] N 0%, wherec? > 0.
Then
X' o (0,02).
Remark 1. Hypotheses (A) and (B) guarantee that X' can be represented in the form

X' =Y'+Z] with Z} % 0and Y = Z,[(":t]o Tak, Where the sequence 7" = (1, F}!)
is a martingale difference, and E(n, | #]_;) = 0, with |nx| < ¢, uniformly for
1 <k < nandn > 1. Consequently, in the cases under consideration, the proof
reduces to proving the central limit theorem for martingale differences.
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In the case where the variables &1, ..., &, are independent, conditions (A),
(B), and (C), with ¢ = 1 and 0® = o, become

@ > P&l > ) =0,
k=1

®) Y Elud (Il < )] — 0,

=1
) Zvar[5'1k1(|fnk\ <e)] = o?
=1

These are well known; see the book by Gnedenko and Kolmogorov [33]. Hence
we have the following corollary to Theorem 1.

Corollary. If &1, ..., &y are independent random variables, n > 1, then

(a)v(b) ( :>X’1_Z£nk_></1/(0 0)
k=1
Remark 2. In hypothesis (C), the case o2 = 0 is not excluded. Hence, in particular,
Theorem 1 yields a convergence condition to the degenerate distribution (X7 KN 0).

Remark 3. The method used to prove Theorem 1 lets us state and prove the follow-
ing more general proposition.
LetO:t0<t1<t2<~--<tj§1,0:a,20§a,21gaigmga,f,

o2 = 0,and let ey, ..., ¢; be independent Gaussian random variables with zero
means and E¢f = 02 — o7 _ . Form the Gaussian vector (W,,, ..., W;) with W, =
et e
Let conditions (A), (B), and (C) be satisfied for t = #y,...,#. Then the joint
distribution (P}, ) of the random variables (XJ,,...,X}) converges weakly to
the Gaussian distribution P, ., of the variables (W;,,..., W, ):
PSPy

Remark 4. Let (02)o<,<1 be a continuous nondecreasing function, o3 = 0. Let
W = (W,)o<i<1 denote the Brownian motion process (the Wiener process) with
EW, = 0 and E W? = o2. This process was defined in Sect. 13, Chap. 2, Vol. 1, for
02 = t. In the general case, this process is defined in a similar way as the Gaus-
sian process W = (W,)o<,<1 with independent increments, W, = 0, and covariance
function r(s,#) = min(o?,?). It is shown in the general theory of stochastic pro-
cesses that there always exists such a process with continuous paths. (In the case
0,2 = t, this process is called standard Brownian motion.)

If we denote by P" and P the distributions of the processes X" and W in the
functional space (D, (D)) (Subsection 7, Sect.2, Chap.2, Vol. 1), then we can
say that conditions (A), (B), and (C), fulfilled for all 0 < ¢ < 1, ensure not only
the convergence of finite-dimensional distributions (P?l,...,r, 5 P, gy 1 <t2 <

<<t j=1,2,... ) stated earlier, but also the functional convergence, i.e.,

the weak convergence of the distributions P" of the processes X" to the distribution
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of the process W. (For details, see [4, 55, 43].) This result is usually called the
functional central limit theorem or the invariance principle (when &,1, ..., &,, are
independent, the latter is referred to as the Donsker—Prohorov invariance principle).

2. Theorem 2. 1. Condition (A) is equivalent to the uniform asymptotic negligibility
condition

. P
(A*) maxy <i<u] [§m| — 0.
2. Assuming (A) or (A*), condition (C) is equivalent to
* n n P
(c) 020 [ — EGul (16l < 1) | F1)2 5 0.

(The value of ¢ in (A*) and (C*) is the same as in (A) and (C).)
Theorem 3. For each n > 1 let the sequence
§" = (s A), 1<k<n,
be a square-integrable martingale difference:
Egh <oo, E(Gul|Zi 1) =0.

Suppose that the Lindeberg condition is satisfied: for any € > 0,
(1]

@ Y E&d(gul > o) | Fi,] Do

k=0
Then (C) is equivalent to

P
(X" = a7, )
where (quadratic characteristic)
[]
(X" = E(&x|F), )
k=0
and (C*) is equivalent to
P
X", = o7, (3)
where (quadratic variation)
[nt]
X" =) &2 “
k=0

The next theorem is a corollary of Theorems 1-3.
Theorem 4. Let the square-integrable martingale differences £" = (&, '), n > 1,
satisfy (for a givent, 0 < t < 1) the Lindeberg condition (L). Then

(1]
N EE | F) Do = XS (0,07), 5)

k=0
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[nt]
Y250 = X5 (0,07). ©)
k=0

3.
PROOF OF THEOREM 1. Let us represent X' in the form

[nt] [nt]

= Zgnqugnk‘ S 1) + Zgnk1(|£nk| > 1)

k=0 k=0
[nt] [nd]
= Z E[gnkl(mnkl < 1) | ylgfl] + Zgnkl(‘gn” > 1)
k=0 k=0
[n1]
+ Y {eud (6] < 1) — E[6ud (6] < 1) F1])- 9
k=0

We define

[n1]

ZE&/J (1ml < 1) | FA]

p(l) = ( &uc € T), ®)
v (L) =P e T[F 1),

where T is a set from the smallest o-algebra %y = o (<) generated by the system
of sets % in Ry = R\ {0}, which consists of finite sums of disjoint intervals
(a, b] not containing the point {0}, and P(&, € I'|.%]_,) is a regular conditional
distribution of &, given the o-algebra .%" ;.

Then (7) can be rewritten in the following form:

[n1] [nt]
X'=B'+ / xdup + / xd(pp —vp), )
o ; {>1) ; {<1)

which is known as the canonical decomposition of (X!, .%#"). (The integrals are to
be understood as Lebesgue—Stieltjes integrals, defined for every sample point.)

According to (B), we have B} 5 0. Let us show that (A) implies

[n1]

Z/ Ix|dp 5 0. (10)
= s

[nd] [nd]

> / ldi =3 Jeul 1] > 1). (1
{|x|>1} h—1

For every § € (0,1),

We have
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[nf] [nt]
{ENMUMM>D>5}{ZHQM>D>5}
k=1

k=1
since each sum is greater than ¢ if |&,;| > 1 for at least one k. It is clear that

[nt]

[nt]
ZMM>D=Z/ dify (= ULy):
k=1 =171

[x|>1}

By (A),

(]

n — n P
Vi = / dvg =0,
=171

[x|>1}

and V{ is %', -measurable.
Then, by the corollary to Theorem 4 in Sect. 3,

n P n P
Vi = 0= Upy —0.

187

12)

13)

(14)

Note that by the same corollary and the inequality AUT‘m] < 1, we also have the

converse implication:
Uy =0 = Vi 50,

which will be needed in the proof of Theorem 2.
The required proposition (10) now follows from (11)—(14).
Thus
X =¥ +7,

where

[n1]

w=d [ g,
1(:21 {lx]<1}

and

[nt]

Zf:BHZ/ xdut 5o.
= >

It then follows by Problem 1 that to establish that
X145 (0,02),

we need only show that
Y5 o (0,02).

15)

(16)

A7)

(18)

19)
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Let us represent Y} in the form
Y= Wﬁn] (e) + A’fnt] (), €€(0,1],

where
[n1]
Vin /’L - Vn))
t] Z /s<|x|<1} k «

nt]

AYA xd(pg — v
t] Z/x<s} k k)

7 Martingales

(20)

21

As in the proof of (10), it is easily verified that, because of (A), we have

Vi (€ )—>0 n — 00.

The sequence A"(e) = (A}(e), %), 1 < k < n, is a square-integrable martin-

gale with quadratic characteristic

(AN = _i [/{|x<g} v - (/{xISE}XdV?) 2}
Zk: r[§nil (16| < &) | F1]-

Because of (C),
(A" (€)Y = 07 -
Hence, for every ¢ € (0, 1],
n n P
max{yf, (€), [{(A"(e))puy — o7} 0.
By Problem 2 there is then a sequence of numbers ¢, | 0 such that
n P n P
Vind] (en) =0, (A"(En)) g — Ut2-

Therefore, again by Problem 1, it is enough to prove that

—h/V(O o?),

[m‘
where
M = Al(en) / d(p! — v,
Z IXI<6n}
ForI' € A, let

() = 1(AM e ), v(T') = P(AM{ e T'[.7,)

(22)

(23)
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be a regular conditional probability, AM} = M} —M}_,, k > 1, Mg = 0. Then the
square-integrable martingale M" = (M}, %), 1 < k < n, can evidently be written

in the form . )
MZ:ZAM?=Z/ xdfi.
i=1 i—1 J{Ix<2e,}

(Notice that |AM?| < 2g, by (23).)
To establish (22), we have, by Theorem 1 (Sect. 3, Chap. 3, Vol. 1), to show that,
for every real A,

Eexp{iAM,} — exp(— IX%0?). (24)

Set
k
G} = / (e —1)di
,; {1¥1<26,} !
and
k
&(G" =1Ja+Aaa).
j=1

Observe that

14+ AG =1+ / (€™ — 1)dif = E[exp(AAMD) | F1_ ],
{Ix|<2¢e,}

and consequently,

k
06" = [ Elexp(iramy) | 77,

j=1
By the lemma to be proved in Subsection 4, (24) will follow if, for every real A,

[nd]

|64 (G| = | [ ] Elexp(AAM]) |.Z]1]| > (M) > 0 (25)
j=1
and
&14(G") D exp(—1A%0?). (26)

To see this, we represent &;*(G") in the form

k
&(G") = exp(G}) - [[(1 + AG)) exp(~AG)).

=1

(Compare the function &;(A) defined by (76) of Sect. 6, Chap. 2, Vol. 1.)
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Since
/ xdif = E(AM] | F]" ;) =0,
{|x|<2¢e,} ’
we have .
Gy = / (€™ — 1 — idx) di.
,; (lxl<22,} !
Therefore
; 1
|AGE] < / e — 1 — idx|dif < —\2 x? di}
{Ix1<2e.} 20 Jym<oe
1
< 5)\2(25,1)2 -0
and
AGH < 2x? / T an
Z Z \x\<2€n}
By (O),

; P
(M") ) = 07

Suppose first that (M")(,,; < a (P-a.s.). Then, by (28), (29), and Problem 3,

(1]
H(l + AGy) exp(—AGY) 5 1, n— oo,
k=1

and therefore, to establish (26), we only have to show that
G’fnt] — — )\20' P
i.e., after (27), (29), and (30), that

(1]

> / (e™ — 1 —idx + $A%?) dif —
k=1 {Ix]<2e,}

le™ — 1 —idx + 2227 < L),

But

and therefore

[nt] [nt]

iIAx 142.2
et —1—idx+ )\ Ay < 2|7 (2e,) /
;/{xl% 05 < P2 3

= L, AP (M) g < 3ealAPa— 0, n— .

{|x]<2e,}

27

(28)

(29)

(30)

€1V

(32)

X% diff

Therefore, if (M”)[m] < a (P-ass.), (31) is established and, consequently, so is

(26).
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Let us now verify (25). Since [¢** — 1 — idx| < 2(\x)%, we find from (28)
that, for sufficiently large n,

60 (G")] =

k
> [Ja - 3apr))

I
@
o]
ke
r—’H
5
OQ
Wl
>
w
——

But

SAZA(M™);
log(1— IN2AM")) > ——2——F
— 3AZA(M");

and A(M"); < (2¢,)% 1 0, n — oc. Therefore there is an ng = ng(\) such that for
alln > ng(N),
|6(G")] = exp{—\*(M")1},

and therefore ,
|60 (GM)] > exp{=A*(M")juy} = e ¢

Hence the theorem is proved under the assumption that (M”)[m] < a (P-as.). To
remove this assumption, we proceed as follows.
Let
v = min{k < [nd]: (M"); > 02 + 1},

taking ™" = oo if (M"),q < 02 + 1.
Then, for M = Mj -, we have

(M) ) = (M")ppipr < 1+ 07 + 265 < 1+ 07 + 267 (= a),
and by what has been proved,
E exp{iAM,j} — exp(—3\*07).

But
lim | E{exp(iAM[,;) — exp(iAM] m) H < 211111 P(t" < o0) =0.

Consequently,
hm Eexp(iAMy,)) = hm E{exp(iAMy,) — exp(iAM?m])}

+limE exp(z)\M[m]) = exp(—3A\%07).

This completes the proof of Theorem 1.
O

Remark. To prove the statement made in Remark 2 to Theorem 1, we need to show
(using the Cramér—Wold method [4]) that for all real numbers Aq, ..., \;
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J
Eexp {i[Mubt + S ni0t — 15 )]}
k=2
1,4 1 d 2/ 2 2
— exp _5)\10'11 — 52)\]((0-[](_0—;1{71) .
k=2

The proof of this is similar to that of (24), replacing (M}, .#') by the square-
integrable martingales (M}, .Z}'),

k
M =" vAM},
i=1

where v; = Ay fori < [nt;] and v; = ) for [ntj_1] < i < [nt;].

4. In this subsection we prove a simple lemma that lets us reduce the verification of
(24) to the verification of (25) and (26).
Let " = (Nu, #{), 1 <k <n, n > 1, be stochastic sequences, let

n
Y= Z Mk
k=1

let

n

&"(N) = [ Elexp(idn) | Fi_1), AeR,
k=1

and let Y be a random variable with

Lemma. If (for a given \) |&"(\)| > ¢(\) > 0, n > 1, a sufficient condition for
the limit relation ' '
Ee? — Ee? (33)

is that
)5 en). (34)

PROOF. Let
poNg

m'(\) = PZIONE

Then |m"(\)| < ¢7(A\) < oo, and it is easily verified that

Em"()\) =1.
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Hence, by (34) and the Lebesgue dominated convergence theorem,

[EeN —EeN| = [E(N" — 6(V)| < [E(m"(N)[E"(N) — SN
< I NEISTO) — S| 0, 1 e
O

Remark 5. I